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Zusammenfassung

Wellenfunktionen, die Lösungen der Schrödingergleichung, ermöglichen im Prinzip die
Berechnung einer Vielzahl an Eigenschaften beliebiger Materialien. Für die Entdeckung
und Erforschung neuer Materialien – wie zum Beispiel Supraleitern, Katalysatoren oder
Medikamenten – ist die effiziente Berechnung von Wellenfunktionen daher von großer Be-
deutung. Dies ist herausfordernd, da Wellenfunktionen hochdimensionale Objekte sind und
zusätzlich hohe Genauigkeiten für praktische Anwendungen notwendig sind. Ein vor wenigen
Jahren vorgeschlagener Ansatz ist die Kombination von Variational Monte Carlo (VMC) mit
künstlichen neuronalen Netzen. Bei dieser Methode wird die Wellenfunktion durch ein neuro-
nales Netz approximiert, die zugehörige Energie durch Monte Carlo Integration geschätzt
und anschließend mittels Gradientenverfahren minimiert. Dank der hohen Expressivität
neuronaler Netze erzielt diese Methode herausragende Genauigkeit bei gleichzeitig moderater
Abhängigkeit der Rechenzeit von der Systemgröße.

In praktischen Anwendungen, welche oftmals Lösungen der Schrödingergleichung für
viele unterschiedliche Moleküle oder Geometrien benötigen, ist dieser Ansatz jedoch zu
rechenaufwändig, da für jedes neue System die Wellenfunktion neu optimiert werden muss.
Diese Arbeit beschreibt tranferierbare Wellenfunktionen auf Basis neuronaler Netze. Sie
ermöglichen die gemeinsame Lösung der Schrödingergleichung für eine Vielzahl an Systemen,
sowie den Transfer einer solchen Lösung auf neue Systeme. Die Dissertation gibt einen kurzen
Überblick über VMC mit neuronal Netzen und enthält eine Reihe an Publikationen, welche
schrittweise transferierbare Wellenfunktionen einführen. Die Publikationen beginnen mit
dem Fall einer einzelnen Geometrie, dann unterschiedlichen Geometrien desselben Moleküls
und schlussendlich einer Wellenfunktionen welche auf einem Datensatz unterschiedlichster
organischer Moleküle trainiert werden kann.
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Abstract

Solutions to the Schrödinger Equation, referred to as wavefunctions, allow in principle to
predict any property of any molecule or material. Finding solutions efficiently is therefore
crucial to computational discovery and understanding of new materials such as drugs, catalysts
or superconductors. However due to the large dimensionality of the problem and the high
accuracy required for practical applications, designing efficient methods to find approximate
solutions is challenging. One recently proposed method is to combine Variational Monte Carlo
(VMC) with neural network wavefunctions: This method represents the wavefunction as a
neural network, estimates the corresponding energy of the ansatz via Monte Carlo integration,
and minimizes this energy via gradient based optimization. Due to the high expressivity of
neural networks this ansatz achieves exceptionally high accuracy with moderate scaling of
computational costs.

However for practical applications, which often require solutions for many different mole-
cules or geometries, this approach often proves unfeasible since it necessitates an expensive
optimization for every new system. This work introduces transferable neural network wave-
functions, capable of simultaneously representing wavefunctions for many distinct molecules.
Transferable neural network wavefunctions yield solutions to the Schrödinger Equation for
many systems in parallel and even allow to use wavefunctions optimized on a set of training
molecules to be applied to new, previously unseen systems. This thesis provides a brief
introduction to the field of neural network wavefunction VMC and contains several related
publications. These successively builds towards a transferable neural network wavefunction -
starting from the single molecule case, via distinct geometries of a single molecule, towards a
fully end-to-end machine learned neural network wavefunction applied to a diverse dataset
of organic molecules.
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Chapter 1

Introduction to Neural Network
Wavefunctions

1.1 Motivation

Molecules and materials are ubiquitous in our daily lives. Drugs, polymers, semiconductors,
catalysts – they are all carefully engineered materials with specific properties that fill important
roles in our modern societies. Understanding existing materials and developing new ones is thus
of vital importance for future progress. For the last centuries, the discovery of new materials has
primarily been driven by experiments, but in the last decades computational physics has emerged
as a powerful tool to study materials in silico. This has in principle the potential to lower cost
and enable the search for new materials on a much great scale than ever before.

The key challenge for computational methods has already been recognized and succinctly expressed
by Paul Dirac in 1929 [1]:

The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too complicated
to be soluble. It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead to an explanation of
the main features of complex atomic systems without too much computation. (Paul
Dirac)

On the one hand, except for some typically minor approximations (see section 1.3.1), the
Schrödinger Equation (a linear PDE) and its solutions yield in principle a full description of
any property of any material. On the other hand, solving the equation – i.e. finding a the
ground-state wavefunction for a given molecule – is computationally challenging. Analytical
solutions are only known for atoms with a single electron (i.e. a single Hydrogen atom) and thus
any system of practical interest must be solved numerically. It has furthermore been shown that
for model-Hamiltonians such as the Hubbard model, finding the ground-state wavefunction is
a QMA-hard problem [2], making it at least as hard as any NP-complete problem. Given the
importance of the problem, a plethora of methods have been developed over the last decades to
solve the Schrödinger Equation approximately. Some methods such as the Hartree-Fock (HF)
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method are computationally cheap and scale well with system size, but are only accurate for a
limited class of systems. Other methods such as Configuration Interaction (CI) and Coupled
Cluster (CC) often yield highly-accurate results that are in good agreement with experiments, but
scale poorly with system size and are thus limited to small systems. Density Functional Theory
(DFT) has emerged as a breakthrough, and has been awarded the Nobel Prize in chemistry in
1998, since it yields surprisingly high accuracy or while scaling well with system size [3]. However,
DFT requires the use of an essentially uncontrolled approximation, which can fail for many
systems of interest and is thus not universally applicable.

This dissertation and the included papers are concerned with the advancement of an emerging
method which might one day be able to combine highly accurate solutions with moderate scaling
of computational cost. It is based on combining the well-established method of Variational Monte
Carlo (VMC) with the recent advances in Deep-Learning.

1.2 Notation

Throughout this introduction, the following notation is used: Vectors and higher-dimensional
tensors are denoted with bold-face symbols. Functions use non-bold symbols irrespective of their
output dimension. When the same symbol is used with indices it refers to scalar elements of this
tensor or slices along the leading dimensions. For example the tensor A ∈ Ra×b×c is a tensor,
Aijk ∈ R refers to a scalar element of A and Ai ∈ Rb×c refers to a matrix-shaped slice of the
tensor A.

The operator ⊙ denotes element wise multiplication of two vectors of identical shapes. For two
tensors a ∈ Rd1×···×da and b ∈ Rd1×···×db , the operation c = [a|b] denotes concatenation of a and
b along their last dimension, generally corresponding to some feature-dimension. The resulting
tensor c is thus in Rd1×···×(da+db).

Indices I, J will generally be used for nuclei, indices i, j, k will generally be used for electrons or
orbitals. The notation j ∈↑ refers to the set of all electron-indices belonging to up-electrons, i.e.
j = 1 . . . n↑. Correspondingly j ∈↓ refers to all spin-down indices, i.e. j = n↑ + 1 . . . nel.

Trainable parameters are denoted with θ.

1.3 The Schrödinger Equation

1.3.1 The Born-Oppenheimer approximation

Throughout this work, we will consider the time-independent Schrödinger equation in the Born-
Oppenheimer approximation. A molecule is comprised of heavy nuclei and much lighter electrons.
In the Born-Oppenheimer approximation, a molecule is fully specified by the positionsR ∈ RNnuc×3

of the Nnuc nuclei, the charges of these nuclei Z ∈ NNnuc and the number of electrons nel. While
the positions of the nuclei are given, the electrons do not have deterministic positions r ∈ Rnel×3.
Instead the electron positions are randomly distributed according to a probability distribution
p(r),

r ∼ p(r) = |ψ(r)|2. (1.1)

The function ψ : Rnel×3 → C, the square of which yields the probability distribution, is the
so-called wavefunction. The wavefunction ψ is a function of all electron coordinates and its
squared absolute value describes the probability of finding the electrons at given positions. Since
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|ψ|2 is a probability density, it follows that it must be normalized:
∫
|ψ|2dr = 1, (1.2)

leading to the boundary condition that ψ → 0 for any electron coordinate riα →∞.

The wavefunction is specified as the solution to the following eigenvalue problem

H(R,Z)ψ = Eψ, (1.3)

where H is the Hamiltonian operator, which depends on the molecule, and the eigenvalues E ∈ R
corresponds to the energy levels of the system. For a molecule with Nnuc nuclei and nel electrons,
the Hamiltonian H is given by

H = Hkin +Hel-el +Hel-nuc +Hnuc-nuc (1.4)

Hkin = −1

2

nel∑

i=1

∇2
i = −

1

2

nel∑

i=1

3∑

α=1

∂2

∂r2iα
(1.5)

Hel-el =

nel∑

i=1

nel∑

j=i+1

1

|ri − rj |
(1.6)

Hel-nuc = −
nel∑

i=1

Nnuc∑

I=1

ZI
|ri −RI |

(1.7)

Hnuc-nuc =

Nnuc∑

I=1

Nnuc∑

J=I+1

ZIZJ
|RI −RJ |

. (1.8)

The term Hkin, containing second derivatives with respect to all electron coordinates, corresponds
to the kinetic energy of the electrons. The remaining terms correspond to the Coulomb interaction
between all particles. Because H is a hermitian operator, its eigenvalues are real and its
eigenfunctions form an orthonormal system, i.e.

⟨ψn, ψm⟩ :=
∫
ψ∗
nψmdr = δnm. (1.9)

The spectrum of H typically consists of two parts: Discrete energy levels with negative eigenvalues,
corresponding to bound states, and a continuum of positive eigenvalues, corresponding to unbound
states.

The overall goal of solving the Schrödinger Equation is thus as follows: Given a molecule specified
by the positions R and charges Z of the nuclei and the number of electrons nel, find the
eigenfunctions ψn and corresponding eigenvalues En of eq. (1.3).

Besides their positions, electrons have another property named spin, which is a binary variable
with its values typically being referred to as spin-up or spin-down. Throughout this work the spin
for each electron is assumed to be fixed and the electrons can thus be partitioned into two groups:
n↑ spin-up electrons and n↓ spin-down electrons (with n↑ + n↓ = nel). By convention, we choose
for the electron indices i ∈ [1, n↑] to refer to spin-up electrons and i ∈ [n↑ + 1, . . . nel] to refer to
the spin-down electrons. Since electrons with the same spin are indistinguishable, the probability
density |ψ|2 must not change under permutation of two electrons with the same spin:

|ψ(r1, . . . , ri, . . . rj , . . . rnel
)|2 = |ψ(r1, . . . , rj , . . . ri, . . . rnel

)|2 (1.10)
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This can be satisfied by the wavefunction ψ either being invariant under particle exchange (i.e. ψ
being symmetric w.r.t to particle order) or by ψ changing its sign under particle exchange (i.e. ψ
being antisymmetric w.r.t to particle order). The former particles are called bosons, the latter
are called fermions:

bosons: ψ(r1, . . . , ri, . . . rj , . . . rnel
) = +ψ(r1, . . . , rj , . . . ri, . . . rnel

) (1.11)

fermions: ψ(r1, . . . , ri, . . . rj , . . . rnel
) = −ψ(r1, . . . , rj , . . . ri, . . . rnel

) (1.12)

Electrons are fermions and a physical wavefunctions ψ must therefore not only satisfy the
Schrödinger Equation and its boundary condition, but also fulfil this antisymmetry property.

1.3.2 The variational principle

Of particular interest is the lowest eigenvalue E0 and its corresponding eigenfunction ψ0, which
are referred to as the ground-state energy and the ground state. The physical motivation for
this is that physical systems typically decay to their lowest energy state and the ground-state is
thus the most likely state in which a molecule is found in nature. Given any normalized trial
wavefunction ψ it holds that ∫

ψ∗Hψdr ≥ E0. (1.13)

For a rigorous proof the reader is referred to Gustafson et al. [4], while for the case of a confining
potential (leading to a purely discrete spectrum) it can be shown by expanding ψ in the basis of
eigenfunctions ψn:

ψ =
∑

n

cnψn with
∑

n

|cn|2 = 1 (1.14)

∫
ψHψdr =

∑

nm

c∗ncm

∫
ψnHψmdr = (1.15)

=
∑

nm

c∗ncmEm

∫
ψnψmdr = (1.16)

=
∑

n

|cn|2En ≥ E0 (1.17)

One way to find the ground-state energy is thus to choose a trial function ψθ, parameterized by
some parameters θ and minimize the energy of this trial function

Eθ =

∫
ψθHψθdr. (1.18)

When minimizing Eθ one obtains an energy estimator which is guaranteed to be bounded by E0

from below. When the class of functions parameterized by θ is sufficiently expressive to contain
ψ0 (or a close approximation to it), the true ground-state energy (or a close approximation to it)
can be found this way.

If the ground-state is not degenerate, i.e. there is only a single eigenstate ψ0 with eigenvalue E0,
convergence of the energy also implies convergence of the wavefunction towards this ground-state
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wavefunction:

Eψ =

∫
ψ∗Hψ (1.19)

=
∑

n

|cn|2En = |c0|2E0 +
∑

n>0

|cn|2En (1.20)

≥ |c0|2E0 +
∑

n>0

|cn|2E1 (1.21)

= |c0|2E0 + (1− |c0|2)E1 (1.22)

|c0|2 ≥ 1− Eψ − E0

E1 − E0
(1.23)

This means that as the obtained energy Eψ of the trial wavefunction approaches the ground-state
energy E0, the square of the overlap with the groundstate |c0|2 approaches 1. The relevant energy
scale for this is the energy gap E1 − E0 between the ground-state and the next highest energy
eigenvalue (called the first excited state).

To implement this scheme in practice three key ingredients are required:

• Integrator: An efficient method to evaluate the 3nel-dimensional integral in eq. (1.18).
This is in general challenging, because of the integral’s high dimensionality.

• Optimizer: A method to optimize the parameters θ of the trial wavefunction.

• Trial wavefunction: A trial wavefunction ψθ which is sufficiently expressive to closely
match the groundstate wavefunctions of the molecule.

Due to the high dimensionality of the wavefunction, integration is typically done using Monte
Carlo integration as outlined in section 1.7 and the entire method is therefore named Variatonal
Monte Carlo (VMC). Optimization is typically done using gradient-based methods as outline in
section 1.8. For the trial wavefunction, historically purpose-built ansatze containing only a small
number of parameters have been used, but recently deep-learning-based ansatze have emerged.
These deep-learning based ansatze (also referred to as neural wavefunctions) are attractive
because neural networks are efficient universal function approximators and can efficiently express
high-dimensional functions. Section 1.5 gives a brief overview of recent developments in the
field of neural wavefunctions and section 1.6 discusses ansatze which can be transferred across
Hamiltonians of different molecules.

1.4 Conventional Mean-Field Approaches

Before diving into neural network based wavefunctions, it is instructive to briefly review conven-
tional approaches to approximately solve the Schrödinger Equation. A plethora of such methods
has been developed over the last decades and a comprehensive review of these methods is beyond
the scope of this thesis. This section will focus on the Hartree-Fock (HF) method, since it serves
as a starting point for deep-learning based VMC methods. For a thorough derivation and analysis
of Hartree-Fock and post-HF methods, the reader is referred to [5].
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1.4.1 From product ansatz to Slater determinants

If there was no electron-electron interaction Hel-el and no antisymmetry, the Hamiltonian could
be decomposed into a sum of Hamiltonians for each electron

Hnon-interac =
∑

i

h1(ri) (1.24)

h1(r) = −1

2
∇2

r −
∑

I

ZI
|r −RI |

+
1

nel

∑

I>J

ZIZJ
|RI −RJ |

, (1.25)

which could then be solved by a product ansatz

ψnon-interac(r1, . . . , rnel
) =

nel∏

i=1

ϕi(ri) (1.26)

h1ϕi = ϵiϕi (1.27)

Enon-interac =
∑

i

ϵi. (1.28)

Solving the eigenvalue problem eq. (1.27) would be much easier than finding solutions for the full
Schrödinger Equations, because ϕ only depends on a single electron coordinate and is thus only a
3-dimensional function, whereas ψ is a 3× nel-dimensional function.

To address the initial simplifications, two changes are made to this simple product ansatz, which
together are known as the Hartree-Fock (HF) method:

• The product ansatz in eq. (1.26) is explicitly antisymmetrized.

• The one-particle Hamiltonian eq. (1.25) is augmented by an additional mean-field potential
which captures the average interaction of a particle with all other particles: hmean-field =
h1 + V mean-field.

To antisymmetrize eq. (1.26) one can sum over all possible permutations P of nel electrons

ψHF =
1√
nel!

∑

P

σ(P )ϕP1(r1)ϕP2(r2) . . . ϕPnel
(rnel

), (1.29)

where σ(P ) ∈ {−1,+1} denotes the sign of permutation P . Because this sum contains all
possible permutations of coordinates with their appropriate sign, this ansatz is antisymmetric.
When two particles are exchanged, one obtains the original wavefunction by swapping the two
corresponding elements in each permutation P . This flips the sign σ(P ) yielding the desired
antisymmetry. Naively evaluating this ansatz as a sum over all permutations is computationally
intractable, since it involves a sum over nel! terms. This ansatz is however equivalent to the
following determinant

ψHF =
1√
nel!

∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ1(r2) . . . ϕ1(rnel
)

ϕ2(r1) ϕ2(r2) . . . ϕ2(rnel
)

...
...

. . .
...

ϕnel
(r1) ϕnel

(r2) . . . ϕnel
(rnel

)

∣∣∣∣∣∣∣∣∣
:=

1√
nel!

det(Φ), (1.30)

which can be evaluated efficiently in O(nel3) operations using Gaussian elimination. This
antisymmetric ansatz is known as a Slater determinant [6] and is in essence an antisymmetrized

12



version of a product ansatz. The antisymmetrization procedure outlined above is overzealous, since
it enforces antisymmetry with respect to exchange of any two electrons, whereas antisymmetry
should only be enforced for electrons of the same spin. This is easily remedied by the ansatz

ψHF =
1√
n↑!n↓!

∣∣∣∣∣∣∣

ϕ↑1(r1) . . . ϕ↑1(rn↑)
...

. . .
...

ϕ↑n↑(r1) . . . ϕ↑n↑(rn↑)

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

ϕ↓1(rn↑+1) . . . ϕ↓1(rnel
)

...
. . .

...
ϕ↓n↓(rn↑+1) . . . ϕ↓n↑(rnel

)

∣∣∣∣∣∣∣
(1.31)

=
1√
n↑!n↓!

det(Φ↑) det(Φ↓), (1.32)

which effectively antisymmetrizes each set of electrons separately.

While using Slater determinants introduces the missing antisymmetrization, the omission of the
electron-electron Coulomb repulsion in Hnon-interac still needs to be addressed. This is done by
adding to h1 the mean-field operator V mean-field

V mean-field =
∑

j

V Hartree
j + V exchange

j (1.33)

V Hartree
j (r) =

∫ |ϕj(r′)|2
|r − r′| dr

′ (1.34)

(V exchange
j ϕi)(r) = ϕj(r)

∫
ϕ∗j (r

′)ϕi(r
′)

|r − r′| . (1.35)

The term V Hartree
j (r) is Coulomb-like potential, but instead of depending explicitly on all electron

coordinates, it is a one-particle potential which describes the repulsion of an electron by the
average electron density

∑
j |ϕj(r′)|2. The term V exchange

j (r) arises from antisymmetrization as
detailed in [5]. The resulting operator for the eigenvalue problem

[
h1 + V mean-field({ϕj}j=1...nel

)
]
ϕi = ϵiϕi (1.36)

now depends on the eigenfunctions {ϕj} and the problem is therefore typically solved iteratively:
Guess ϕ, compute the resulting potential V mean-field, solve the eigenvalue problem to obtain an
updated set of orbitals ϕ and iterate until the obtained orbitals ϕ and the resulting potential
V mean-field are consistent with each other. This procedure is known as self consistent field (SCF)
iteration.

The one-particle functions ϕi, which are obtained as the eigenfunctions of the mean Hamiltonian
are called orbitals. Note that the orbitals ϕ in each determinant must be distinct, since the
determinant would otherwise be identical to zero. The ground-state wavefunction is thus obtained
by finding the nel lowest eigenfunctions of the mean-field Hamiltonian and using them as orbitals
in eq. (1.30). A few things to note about the Hartree-Fock solution are:

• The HF-ansatz is no longer a product ansatz (due to the antisymmetrization), and thus the
wavefunction (and correspondingly the electron density) can no longer be factorized into
functions depending on only a single electron. Due to antisymmetrization, the probability
of finding an electron does explicitly depend on the coordinates of the other electrons, an
effect known as exchange interaction.
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• Beyond this exchange interaction the HF-ansatz does not explicitly account for electron-
electron interactions and does therefore not yield the exact ground-state wavefunction. The
energy difference between the actual ground-state energy and the Hartree-Fock energy is
known as correlation energy.

• Because the electron-nucleus interaction often dominates the total energy, this missing
correlation energy is often only a small fraction of the total energy E0 (e.g. for a Nitrogen
molecule Ecorrelation ≈ 0.005E0), but Ecorrelation is often still orders of magnitude larger
than the accuracy required to predict experiments [7].

While a single determinant is insufficient to express the exact groundstate wavefunction, the
approximation can be systematically improved by using a linear combination of such Slater
Determinants as ansatz

ψCI =

Ndet∑

d=1

ωd det(Φ
↑
d) det(Φ

↓
d), (1.37)

with expansion coefficients ωd. This approach is known as Configurational Interaction (CI).

1.4.2 Basis sets

To represent the orbitals ϕ(r) in numerical computations, they are typically expanded as linear

combinations of basis functions b̂(r):

ϕk(r) =
∑

ν

ĉνk b̂ν(r), (1.38)

with expansion coefficients ĉ. For molecules the most common type of basis functions are
atom-centered basis functions b(r), i.e.

ϕk(r) =

Nnuc∑

I=1

Nbasis∑

µ=1

cIµk bµ(r −RI), (1.39)

with expansion coefficients c ∈ RNnuc×Nbasis×Norb . Here µ enumerates the basis functions per
atom and the total number of basis functions is given by Nnuc×Nbasis. One particularly common
choice for these atom centered basis functions are Gaussian Type Orbitals (GTOs), a product of
spherical harmonics Ylm and a sum of gaussian functions to model the radial dependency

bµ(r) = Ylµmµ

(
r

|r|

)∑

n

αµne
−βµn|r|2 . (1.40)

The parameters αµn and βµn are typically kept fixed (only the expansion coefficients cIµk are
optimized) and are chosen in advance such that the functions bµ approximate the orbitals ϕi of an
isolated atom. Many different basis sets have been developed over the years, with their coefficients
α and β being implemented in various quantum chemistry codes or available on repositories such
as Basis Set Exchange [8].

When expressing the wavefunction as a single Slater Determinant, and using a fixed basis set,
the only free parameters are the expansion coefficients c. Minimizing the energy with respect to
these parameters will yield the lowest possible Hartree-Fock energy achievable within this basis
set. The resulting energy exceeds the true ground state energy and the error can be divided into
two parts:
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• Basis set error: Since the orbitals ϕ are expanded in a finite basis, ansatz may not be
able to fully approximate the true Hartree-Fock solution. The energy difference between
the finite basis energy and the complete basis set limit (CBS limit) is known as the basis
set error.

• Correlation energy: Since a single Slater determinant cannot model arbitrary wavefunc-
tions, there is an approximation error between the CBS Hartree-Fock energy and the true
groundstate energy, known as the correlation energy.

1.5 Deep-Learning-based Ansatze for a Single Molecule

Using neural networks as an ansatz we aim to minimize both types of errors. On the one hand
we use neural networks as function approximators instead of a linear basis set expansion, to
minimize the associated approximation error. On the other hand we will design the wavefunction
in such a way that the orbitals ϕ no longer depend on a single electron coordinate ri, but on all
coordinates r, thus overcoming the limitation of the Hartree-Fock ansatz.

1.5.1 Overall structure

The majority of existing neural wavefunction architectures roughly follows these steps to compute
the wavefunction ψ(r1, . . . , rnel

):

1. Input features: Transform the raw inputs ri, RI , spins σi and nuclear charges ZI , by
computing simple input features. These typically include single-particle features xi, XI

for electrons and nuclei, and pairwise-features pij , P iI for electron-electron pairs and
electron-nuclei pairs.

xi = f el(ri, σi,R,Z) (1.41)

XI = fnuc(RI , ZI ,R,Z), (1.42)

pij = f el-el(ri, σi, rj , σj) (1.43)

P iJ = f el-nuc(ri, σi,RJ , ZJ) (1.44)

2. Embedding: Compute a high-dimensional embedding hi for each electron i. These
embeddings not only depend on the input features of electron i but also on all other
electrons j and nuclei J . The function h must be invariant under permutation of two
electrons j, k ̸= i of the same spin. It therefore can only depend on the multiset {x} of all
other spin-up (spin-down) electrons.

hi = h
(
xi, {(xj ,pij)}j∈↑, {(xj ,pij)}j∈↓, X,P i

)
(1.45)

3. Orbitals: Compute orbital functions ϕk(hi) from the embeddings hi for each orbital
k = 1, . . . , nel, and each determinant d.

Φdik = ϕkd(hi) (1.46)

4. Slater determinant: Compute ψ as a sum of Slater determinants of these orbitals Φdik.
Optionally augment it with a function J that is invariant under permutation of electrons
with the same spin. This function is known as a Jastrow factor.

ψ = J
(
{hi}i∈↑, {hi}i∈↓

)∑

d

det(Φd) (1.47)
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All functions in these 4 steps can have trainable parameters θ, which are subsequently optimized
to minimize the energy of the ansatz. The motivation for this ansatz becomes apparent when
expressing the Hartree-Fock wavefunction (see section 1.4.1) in this framework:

1. Input features: Use only relative electron-nucleus coordinates and the nuclear charges as
input features

P iJ = ri −RJ (1.48)

2. Embedding: Use the embeddings hi to evaluate all atom-centered basis functions bµ, i.e.
each element of hi ∈ Rnel×(NnucNbasis) corresponds to one basis-function. Do not consider
any electron-electron interactions.

hi,(Jµ) = bµ(P iJ) (1.49)

3. Orbitals: Evaluate the orbitals ϕ as a linear combination of these basis functions with
expansion coefficients c(Jµ),k.

Φik =
∑

Jµ

c(Jµ),k hi,(Jµ) (1.50)

4. Slater determinant: Express the wavefunction as single Slater determinant. Do not use a
Jastrow factor

ψ = det(Φ) (1.51)

The overall framework thus provides a natural generalization of the Hartree-Fock ansatz, by
allowing electron-electron interactions when computing hi, including an arbitrary permutation
invariant function J , and including multiple determinants.

There are ample design choices when implementing this ansatz, but two restrictions apply:

• The embeddings hi must be permutation equivariant functions of the electron coordinates.
Swapping electron i ↔ j must lead to a swap of embeddings hi ↔ hj , when i, j refer to
electrons of the same spin. This ensures that a swap of electrons leads to a swap of columns
in the Slater determinant, thus enforcing antisymmetry.

• The wavefunction must obey the boundary conditions (e.g. decay to zero for electrons far
away from the nuclei). This condition is typically enforced at the level of orbitals ϕk.

In the following, some deep-learning building blocks as well as a few proposed choices for each of
the four steps are discussed.

1.5.2 Deep-learning building blocks

Most deep-learning ansatze are obtained by combining simple, parameterized building blocks into
expressive functions.

Multi layer perceptron A Multi Layer Perceptron (MLP) forms the most basic building
block of most deep-learning architectures and consists of L layers, alternating between affine
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transformations and elementwise non-linear functions. Given an input x0 ∈ Rd0 , the output of
each subsequent layer l = 1 . . . L is computed as

aln =
∑

m

W l
nmx

l−1
m + bln (Affine transformation) (1.52)

xln = σ(aln) (Elementwise nonlinearity) (1.53)

MLP
(
x0
)
:= xL, (1.54)

with trainable weights W l ∈ Rdl×dl−1 , bl ∈ Rdl for every layer l and a nonlinear function σ,
referred to as activation function.

Activation functions Common choices for this activation function include:

σ(x) = ReLU(x) =

{
0 x < 0

x x ≥ 0
(1.55)

σ(x) = tanh(x) (1.56)

σ(x) = SiLU(x) =
x

1 + e−x
(1.57)

Because the nonlinearity can limit the range of possible output values, depending on the use-case
the nonlinearity is often not applied in the last layer of the MLP. Because the wavefunction
must be twice differentiable (to allow evaluation of the kinetic energy ∇2ψ) w.r.t. the electron
coordinates, the ReLU activation cannot be used for neural wavefunctions and a smooth variant
such as SiLU must be used instead.

It can be shown that an MLP with an activation function that is not a polynomial in the limit of
infinite depth L and layer widths dl is a universal function approximator [9], i.e. any continuous
function can be approximated by it.

1.5.3 Input features

Pairwise features 3D-difference vectors rij = ri − rj and distances rij = |rij | form natural
inter-particle features xij . While including the distance rij in addition to rij may seem redundant,
it serves two purposes: First, it provides an input feature that has a discontinuous derivative
when two particles coincide, in which case also the wavefunction ψ has discontinuous derivatives.
Including this discontinuous input feature thus allows modelling the discontinuous wavefunction
with smooth functions h, and ϕ. Second, many interactions strongly depend on the distance
between particles, so that including it as a feature provides valuable information to the model in
an accessible manner. Some models [7, 10, 11] use rij directly as input to the model, others encode
rij [12–14] by evaluating several radial basis functions and concatenating the outputs

xij,ν = exp

(
− (rij − rν)2

σ2
ν

)
. (1.58)

While some architectures [7, 12] only used the inter-particle distance |rij | and did not use the
corresponding difference vector rij , this has been recognized to be too restrictive.

To avoid input features with excessively large values (in particular for large molecules with large
inter-particle distances), Glehn et al. [15] proposed to logarithmically scale the inter-particle
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distances and differences:

r̃ij = log (1 + rij) (1.59)

r̃ij = rij
r̃ij
rij

(1.60)

(1.61)

Single particle features To initialize the electron features xi, typically all electron-nuclei
difference vectors are being aggregated. FermiNet [10] concatenates these features, while PES-
Net [11] pools a nonlinear transformation of these pairwise features to obtain invariance w.r.t.
permutation of nuclei.

xconcat
i =

[
(ri −R1) | . . . | (ri −RNnuc

)
]

(1.62)

xpooled
i =

∑

J

MLP(ri −RJ) (1.63)

Nuclear charge Z is typically one-hot encoded, and spin can be encoded as a single feature with
values ±1.

1.5.4 Embedding

The role of the embedding network is to take simple input features xi and pij and compute
embeddings hi that form good basis functions for the subsequent many-body orbitals. To do this,
the embedding network must on the one hand be able to incorporate information from all other
electrons j, and on the other hand be able to represent arbitrary functions of a single electron i.
These two requirements are typically addressed by interleaving two kinds of computation over
multiple rounds l: A function f that gathers information from other electrons and a function
g that acts only on a single electron (typically implemented as single Dense layer or an MLP).
Most embedding networks thus follow the following structure:

h0
i = xi Initialization (1.64)

m↑,l
i =

∑

j∈↑
f↑(hl−1

i ,hl−1
j ,pij) Gather information across electrons (1.65)

m↓,l
i =

∑

j∈↓
f↓(hl−1

i ,hl−1
j ,pij)

hli = g
(
hl−1
i ,m↑,l

i ,m↓,l
i

)
Single-electron computation (1.66)

After iterating eq. (1.65) and eq. (1.66) for l = 1 . . . L, the final embeddings are given by the
output of the last layer, i.e. hi = hLi . A few design considerations are worth discussing:

• The message mi in eq. (1.65) is a sum over all particles of a given spin. Since the sum is
a permutation invariant operation, the resulting message is invariant under permutation
of two electrons of the same spin. Therefore the resulting embeddings hi are permutation
equivariant, i.e. swapping two electrons of the same spin, leads to a simple swap of their
respective embeddings. This property is required to enforce permutation antisymmetry in
the subsequent orbital construction.
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• Not all parts of the network have the same impact on computational cost. While the
functions f(hi,hj ,pij) in eq. (1.65) are evaluated for every pair of electrons – and thus
have computational cost scaling as O(nel2) – the function g in eq. (1.66) is only evaluated
for every electron, thus scaling as O(nel). This difference in scaling is typically reflected
by the fact that most architectures use wide (and thus costly) MLPs for the one-electron
computations (eq. (1.66)), and computationally cheaper functions for f↑ and f↓ (eq. (1.65)).

• Some architectures differentiate between messages from up- and down-electrons (as denoted
in eq. (1.65)), while others differentiate between messages from spin-parallel or spin-
antiparallel electrons. The latter choice enforces invariance w.r.t. exchanging all spin-up
particles with spin-down particles and has been shown to be advantageous for closed-shell
systems [16].

Given this very general framework, the key difference between the various embedding architectures
therefore lies in the message functions f↑, f↓, with a few common choices outlined below.

Hartree-Fock If no information from other electrons is gathered (e.g. f↑ ≡ f↓ ≡ 0), the final
embedding hi only depends on the input features of that electron xi. The network cannot capture
any correlation effects and thus the best possible accuracy is Hartree-Fock.

FermiNet In FermiNet the message-function f simply concatenates the feature vectors of
embedding hj and an MLP of pij .

f↑(hi,hj ,pij) =
[
hj | MLP↑ (pij

)]
(1.67)

f↓(hi,hj ,pij) =
[
hj | MLP↓ (pij

)]
(1.68)

FermiNet clearly improves upon a simple non-interacting embedding, by including information
about all other electron embeddings as well as their relative positions in every layer. Note however
that in FermiNet all electron embeddings hj contribute equally to the message mi, irrespective
of the distance between electron i and j. This runs against physical intuition, which suggests
that electrons at large separations would have a smaller influence.

Graph convolutional Neural Networks In a Graph Convolutional neural network (GCN)
[17], the contributions of each electron j to the message mi are weighted by their relative geometric
positions encoded in pij . This weighting is commonly achieved using an elementwise product
along the feature dimension:

f(hi,hj ,pij) = MLP (hj)⊙MLP
(
pij
)
. (1.69)

This allows the network in particular to put higher weight on closer neighboring electrons than
electrons which are far apart. Some approaches [14] enforce this prior knowledge, by multiplying
the MLP

(
pij
)
with functions that explicitly decay as a function of the distance between electrons

i and j.

Self-attention based Neither in FermiNet nor the GCN embedding does the message mi

explicitly depend on the message receiver hi, but instead only depends on the message sender hj
and the pairwise features pij . Self-attention is an approach where the weighting of each message
j is computed as an inner product between a query vector (derived from the receiving embedding
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hi) and a key vector (derived from the sending embedding hj).

qi = W qhi kj = W khj vj = W qhj (1.70)

w̃ij = exp

( ⟨qi,kj⟩√
demb

)
wij =

w̃ij′∑
j w̃ij′

(1.71)

f(hi,hj ,pij) = wijvj (1.72)

The message mi explicitly depends on the embedding for electron i and j, but no longer explicitly
depends on their pairwise features pij . This geometric information must be inferred from the
inner product of qi and kj , and thus requires that the single-electron input features contain
information about their absolute positions.

1.5.5 Orbitals

Given permutation equivariant embeddings hi, for each electron, the orbital part of the network
computes Ndet Slater matrices Φd. Each matrix Φd is a square nel × nel matrix, where one
dimension enumerates electrons (indexed by i) and one enumerates orbitals (indexed by k):

Φdik = ϕkd(hi). (1.73)

The orbital function ϕ typically has the form

ϕkd = ⟨W kd,hi⟩ φ̃(ri), (1.74)

where W is a trainable tensor W ∈ RNorb×Ndet×Demb , and φ̃ is an envelope function enforcing
that ϕ→ 0 as ri →∞. For molecules the envelope function is typically expressed as a sum over
nuclei, leading to

φ̃kd(ri) =

Nnuc∑

J=1

φkdJ(ri −Rj), (1.75)

and putting it all together leads to

Φdik = ⟨W kd,hi⟩
Nnuc∑

J=1

φkdJ(ri −Rj). (1.76)

The most common choice for the envelope function are simple exponential envelopes

φkdJ = πkdJ e
−αkdJ |ri−Rj |, (1.77)

with trainable parameters πkdJ and αkdJ . An alternative is using the single-particle orbitals from
a Hartree-Fock calculation

φkdJ(riJ) = φHF
kdJ(riJ) =

Nbasis∑

µ=1

cJµk bµ(riJ), (1.78)

where bµ are atom-centered basis functions and cJµk are the expansion coefficients of orbital k in
this basis (see section 1.4.2).

Although one might think that using Hartree-Fock orbitals as envelopes provides a useful prior and
good starting point for optimization, the exponential envelopes are not only simpler to implement
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but also lead to substantially more accurate results [7]. Even though using the HF-envelopes
directly can decrease accuracy – and several groups that originally used them [12, 13], replaced
them in later work with exponential envelopes [7, 18] – there is still information in the HF-orbitals
which can be used:

First, different HF-orbitals typically have different length-scales: Some orbitals (known by chemists
as core orbitals) are tightly localized on an atom, whereas other orbitals (known by chemists
as valence orbitals) are somewhat delocalized. This can be quantified and used to initialize the
exponents α of the exponential envelopes, using large values for α to initialize strongly localized
core orbitals and small values to initialize delocalized valence electrons. Numerical experiments
show that this initialization accelerates wavefunction optimization [7], in particular for heavy
atoms where the length-scale of core orbitals differs by an order of magnitude from the length-scale
of the valence electrons.

Second, one can use the expansion coefficients of an HF-orbital as a descriptor of that orbital.
This can be useful when designing a transferable wavefunction as outlined in section 1.6.

1.5.6 Slater determinant and Jastrow Factor

The total wavefunction ψ is assembled as a determinant of the orbitals ϕ (which ensures antisym-
metry) and optionally a permutation invariant function J known as a Jastrow factor

ψ = J ({hi}i∈↑, {hi}i∈↓)
∑

d

det(Φd). (1.79)

The function J must be invariant under permutations of electrons with the same spin, to ensure
that the antisymmetry enforced by the determinant is not violated. It is also common to use a
Jastrow-factor that does not alter the sign of ψ, by enforcing J > 0 via J = exp(Ĵ).

The Jastrow factor generally serves two purposes: Increasing expressivity of the wavefunction
ansatz and enforcing the Kato cusp conditions [19]. The first can be achieved by a permutation
invariant pooling of the embeddings hi, e.g. as

J = exp


∑

i∈↑
MLP(hi) +

∑

i∈↓
MLP(hi)


 (1.80)

The latter refers to a property of the wavefunction known as cusps: The local energy Eloc = Hψ
ψ

of the groundstate wavefunction is constant (with Eloc = E0), but the individual terms in the
Hamiltonian are not. In particular the potential energy terms in eq. (1.19) diverge whenever the
distance between two particles approaches zero. To obtain a constant local energy, the kinetic
energy – given by the curvature of the wavefunction – must diverge with opposite sign, leading to
discontinuous first derivatives of the wavefunction ψ whenever two particles coincide. These cusps
of high electron density (when an electron approaches a nucleus) or low electron density (when
an electron approaches another electron) can be represented by an ansatz that has discontinuous
derivatives at distance rij = 0. A choice proposed by [12] is:

J = exp


∑

i<j

a

b+ rij


 (1.81)

with trainable parameters a, b.
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1.6 Transferable Deep-Learning-based Ansatze

1.6.1 Motivation

So far we have discussed ansatze which can model the wavefunction for one specific system, i.e.
one specific molecule in one specific geometry, i.e. a single input R and Z. Many practical
applications however, require energies (or other observables) not only for one specific system, but
for many different molecules or geometries. One example of such applications is the evaluation of
a Potential Energy Surface (PES), which corresponds to the groundstate energy as a function of
nuclear coordinates E0(R). Other examples include optimizing the structure of a molecule, which
corresponds to minimizing this energy as a function of nuclear coordinatesRopt = argminRE0(R),
or compiling a dataset of high-accuracy energies for training of a downstream model. For each
new system (given via R, Z, nel), we must in principle find a new set of optimal parameters
θ(R,Z, nel) to model its groundstate wavefunction. Given that optimizing the wavefunction for
even just single system can require hundreds of GPU-hours, this puts many interesting applications
out of computational reach. This need for repeated optimization stands in stark contrast to many
other machine learning applications, where models are typically trained once (at potentially large
computational cost), and subsequently allow for fast inference on new problem instances.

It is therefore desirable to find ansatze and methods which can efficiently represent not only
the wavefunction for a single system, but for many different systems at once. Parameters for
such a wavefunction which have been obtained on some representative systems can hopefully
be transferred to new systems. Transferring parameters should ideally fully negate the need
for optimization on the new system, or at least substantially accelerate optimization using the
transferred parameters as a starting point.

Because solving the Schrödinger Equation – even for model systems such as the Hubbard model –
is NP-hard [2], finding an accurate wavefunction, which is transferrable to arbitrary systems, is a
near hopeless task. However, it may be possible to design and train a transferable wavefunction
which is accurate for a relevant subset of systems, e.g. for organic molecules. There are multiple
reasons to believe that such as transferable neural wavefunction may be feasible. Firstly, many
molecules consist of recurring motives (known in chemistry as functional groups). It is therefore
plausible that a wavefunction which has learned to represent the electronic structure of these
groups, could also approximately represent the full wavefunction of a molecule comprised of these
groups. Secondly, the intuition behind the embeddings hi is to give a description of the electron
i and its interaction with the surrounding environment (of nuclei and other electrons). Since the
interaction terms of the Schrödinger Equation are identical across molecules, it is plausible to
hope that these embeddings can generalize across different molecules.

This section outlines some of the challenges associated with designing such transferrable wave-
functions, discusses potential approaches, and finally introduces the Transferable Atomic Orbitals
[20] as one proposed solution.

1.6.2 Design goals

A transferable neural wavefunction should be both highly expressive, i.e. able to accurately
represent any molecular wavefunction, and generalize well across molecules, i.e. yield a good
representation of the groundstate wavefunction for a previously unseen molecules. Several of
the architectures discussed in section 1.5 are highly expressive, i.e. yield low energies when
optimized for a single molecule, but they typically do not generalize across molecules. The
following properties are desirable to allow efficient generalization:
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• Constant parameter count: For some architectures the number of trainable parameters
explicitly depends on the considered molecule. For example, FermiNet [10] uses a concate-
nation of all electron-nuclei pairs as input feature. The dimensionality of this feature scales
with the number of nuclei and so also the dimensionality of weight matrices of MLPs acting
on this feature depend on the number of nuclei. Such an ansatz can fundamentally not
transfer across molecules of different size.

• Permutation symmetry: All ansatze enforce antisymmetry of the wavefunction with
respect to permutation of electrons. Many [10, 15] do however ignore the invariance of the
wavefunction with respect to permutation of the nuclei with the same nuclear charge Z.
Enforcing this symmetry ensures that identical molecules, where indistinguishable atoms
have been permuted, yields the same energy.

• Translation and rotation symmetry: The energy of a molecule is invariant under
translation or rotation of the molecule. Most ansatze enforce translation invariance (by
encoding all inputs as translation invariant differences between two particles), but none
enforce rotational invariance.

• Locality and size extensivity: When a molecules consists of two subsystems, which are
so far separated that the interactions between the subsystems can be neglected, the wave-
function should factorize into the product of the two subsystem-wavefunctions. By enforcing
this property, the wavefunction for a large system can be composed from representations of
local subsystem and thus efficiently transfer to larger molecules.

1.6.3 Challenges to transferability and potential approaches

When considering purely the aspect of parameter shapes, many components of neural network
wavefunction ansatze are in principle transferable, i.e. the number of parameters does not
explicitly depend on the system size. When breaking down a typical ansatz into the four steps of
input features, embeddings, orbitals, and Slater determinants (section 1.5.1), the embedding and
Slater determinants typically pose no issues:

When evaluating the embedding, the pairwise functions f↑, f↓ eq. (1.65) and the single-particle
function g eq. (1.66) can have the same structure independent of system size. When evaluating
the embedding for a larger molecule, the functions will be evaluated more often (for each particle
or each pair of particles), but the dimensions of the trainable parameters can be identical. The
same holds true for computing the final wavefunction ψ via the Slater determinant and Jastrow
factor. The determinant has no trainable parameters and the Jastrow factor is typically just a
sum over functions of a single electron eq. (1.80) or pairs of electrons eq. (1.81).

The input features and orbitals however do typically have parameter dimensions which do explicitly
depend on the system size. For example, when concatenating electron-nucleus pairs to obtain the
initial input features for the electrons (eq. (1.62)), the input feature vector for each electron has
dimension 3Nnuc and thus explicitly depends on system size. This issue can easily be circumvented
by using pooled input features eq. (1.63), simultaneously restoring invariance of the ansatz with
respect to permutation of nuclei.

While the issue of input features is easily resolved, the most challenging aspect of a transferable
ansatz is the generation of the Slater matrix. Recall that the elements of the Slater matrix Φ are
typically constructed from linear projection of the embeddings hi and an envelope function given
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as a sum over nuclei

Φik = ⟨W k,hi⟩
Nnuc∑

J=1

πkJe
−αkJ |ri−RJ |. (1.82)

Here Φik denotes the element of the Slater matrix corresponding to electron i and orbital k, and
hi ∈ RDemb denotes the high-dimensional embedding of electron i. The tensors W ∈ RNorb×Demb

and π,α ∈ RNorb×Nnuc are trainable parameters. Since the number of orbitals Norb must be equal
to nel to obtain a square Slater matrix, all three parameters explicitly depend on the number
of electrons and/or the number of nuclei. The following briefly discusses potential options to
address this challenge.

Separate orbitals for each system The most naive approach is to simply not tackle this
challenge and accept that the model cannot generalize across systems of different sizes. This was
first proposed by [13] (section 2.2), which uses a separate set of orbital parameters for each new
system. Since the neural network embedding contains most parameters, this strategy still allows
to transfer ≈ 95% of parameters across systems, yielding substantial speedups when computing
energies for many geometries of a molecule. The approach is somewhat generalized by Gao et al.
[11, 16], which is still limited to a single molecule, but can represent arbitrary geometries with a
single set of parameters.

Auto-regressive generation of orbitals Instead of generating all orbitals at once (potentially
requiring parameters scaling with the number of orbitals), one could also generate them autore-
gressively. In this approach outputs (in this case orbitals or orbital parameters) are predicted
sequentially, with each output being conditioned on all previous outputs. This paradigm has
been highly successful in language modelling [21, 22] and has also been applied to neural network
wavefunctions in second quantization [23]. A key drawback of this approach is the potentially
slow evaluation of the approach due to the inherently sequential nature of output generation,
which would require Norb sequential passes to generate Norb orbitals. To the author’s knowledge
this approach has not yet been applied to neural wavefunctions in first quantization.

Orbital features as additional inputs An alternative approach is to not parameterize orbital
dependant parameters like W k, πk,αk directly, but to instead define them as trainable functions
of some additional orbital descriptor ck.

W k := f(ck) πk := g(ck) αk := h(ck) (1.83)

There are several options to generate orbital descriptors ck. Gao et al. [14] proposed an ad-hoc
construction based on chemical bonding rules to specify bonds and corresponding orbitals. This
yields good results for some molecules but appears to generalize poorly to new systems.

A key contribution of this thesis is to instead use orbitals from a computationally cheap mean-field
calculations (e.g. Hartree-Fock in a small basis set) to generate orbital features ck. By using
the basis expansion coefficients of the orbitals as descriptors ck, one can compute the orbital-
dependant parameters via eq. (1.83). This approach is discussed in more detail in section 1.6.4
and forms the basis of the papers summarized in sections 2.3 to 2.5.

Determinant-free antisymmetrization Finally one could in principle also avoid Slater deter-
minants entirely (which require square matrices) and instead use a different antisymmetrization
procedure. Several methods have been proposed which bring the additional benefit of offering
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computationally better scaling than the O(nel3) of the determinant. Han et al. [24] essentially
use a wavefunction of the form (spin omitted for the sake of simplicity)

ψ =
∏

1≤i<j≤nel

[f(ri, rj)− f(rj , ri)] , (1.84)

with a trainable pairwise function f . This construction is antisymmetric, can be easily extended
to incorporate arbitrary correlation by using functions of the embeddings hi, rather than the
coordinates ri and has no parameters that depend explicitly on the system size. Unfortunately
results by Han et al. achieve only very low accuracy, with errors exceeding hundreds of milli-
Hartrees for single atoms like Boron, while determinant-based antisymmetrization schemes achieve
sub-milli-Hartree accuracy for these systems [10]. Richter-Powell et al. [25] propose an approach
based on sorting, yielding in principle a favorable scaling of O(nel log nel), but with similar errors
in excess of hundreds of milli-Hartrees for single atoms. Given their low accuracy, none of these
approaches have been applied to transferable wavefunctions.

A more promising approach is a pre-print by Gao et al. [26], which uses Pfaffians for antisym-
metrization. While this approach introduces some additional complexity it avoids the need
for generating exactly as many orbitals as electrons and appears to yield highly accurate ener-
gies.

1.6.4 Transferable atomic orbitals

To construct the transferable orbitals, we start with canonical mean-field orbitals ϕk(r), expanded
in an atom centered basis set

ϕHF
k (r) =

Nnuc∑

J=1

Nbasis∑

µ=1

ckJµ bµ(r −RJ ), (1.85)

with fixed 3-dimensional basis functions b : R3 → R and the tensor of expansion coefficients
c ∈ RNorb×Nnuc×Nbasis . Note that µ enumerates all unique basis functions (and the sum over
J yields all basis functions throughout the molecule), whereas most quantum chemistry codes
typically merge the indices J, µ into a single index enumerating all basis functions. The expansion
coefficients ckJ yield a natural descriptor of the mean field orbital k around the nucleus J . To
obtain correlated transferable orbitals, we use these descriptors as inputs to predict the orbital-
dependent parameters in the final layer of the neural network wavefunction. Starting from the
FermiNet-style orbitals

Φik = ⟨W k,hi⟩
Nnuc∑

I=1

πkJe
−αkJ |ri−RJ |, (1.86)

we first extend the matrix W ∈ RNorb×Demb with an additional dimension corresponding to the
nuclei. Introducing this extended matrix Ŵ ∈ RNorb×Nnuc×Demb and moving it into the sum
yields

Φik =

Nnuc∑

J=1

〈
Ŵ kJ ,hi

〉
πkJe

−αkJ |ri−RJ |. (1.87)

The factor πkJ can be absorbed into the Ŵ kJ , simplifying to

Φik =

Nnuc∑

J=1

〈
Ŵ kJ ,hi

〉
e−αkJ |ri−RJ |. (1.88)
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To obtain transferable orbitals, all that needs to be done at this point is to exchange the trainable
parameters Ŵ kJ ,α with functions that predict these parameters from the orbital descriptors
ckJ .

Φik =

Nnuc∑

J=1

⟨f(ckJ),hi⟩ e−g(ckJ )|ri−RJ |, (1.89)

with trainable functions f : RNbasis → RDemb , g : RNbasis → R+, which in practice are implemented
as MLPs. Because these transferable orbitals are based on atom-wise features, they have been
dubbed Transferable Atomic Orbitals (TAOs).

Orbital localization for improved generalization While using the expansion coefficients
ckJ of the canonical Hartree-Fock orbitals in eq. (1.89) works, generalization can be further
improved by using localized orbitals. Any wavefunction given by a Slater determinant is invariant
under multiplication of the Slater matrix with another matrix U that satisfies det[U ] = 1,

ψ = det[Φ] = det[Φ] det[U ] = det[ΦU ]. (1.90)

The Hartree-Fock orbitals (and correspondingly the expansion coefficients c) can therefore be
linearly combined to a new set of orbitals

ĉk =
∑

k′

ckUkk′ , (1.91)

which represents exactly the same wavefunction. Because the only constraint is det[U ] = 1,
U can be chosen to optimize an additional property of the orbitals. One particular appealing
property is to choose orbitals φloc

k , which are maximally localized. Localized orbitals are useful for
a transferable neural network wavefunction, because it will ensure that orbitals for larger systems
are qualitatively similar to the orbitals found in smaller systems (see fig. 1.1).

Several metrics have been proposed to measure the delocalization of the orbitals, which can then
be minimized by a suitable choice of U . A natural choice is the sum of spatial variance of each
orbital φloc

k , as proposed by Foster et al. [27]:

Ω =

Norb∑

k=1

∫
|φloc
k (r)|2 |r − r̄k|2 dr (1.92)

r̄k =

∫
|φloc
k (r)|2 r dr (1.93)

Several other localization losses have been proposed, many of which are based on localizing the
atomic charge attributable to each orbital. This has originally been proposed by Pipek et al. [28]
(using potentially ill-defined Mulliken-charges) and has been extended to several other well-defined
charge metrics [29]. Orbital localization is computationally cheap and readily implemented in
quantum chemistry software packages such as PySCF [30].

The canonical Hartree-Fock orbitals are eigenfunctions of the Fock operator and typically delocal-
ized, i.e. they are nonzero across the entire molecule. This is a consequence of the kinetic energy
operator, penalizing large curvature required to build local orbitals. The localized orbitals on the
other hand are typically centered on a single site and decay rapidly as a function of distance from
this orbital center. It can in fact be shown that for insulators, there exist orbitals which decay
exponentially as a function of the distance from the orbital center [31]. Figure 1.1a shows this
difference on the example of Hydrogen chains. While the canonical orbitals are spread across
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Figure 1.1: Canonical vs. localized orbitals for the Hydrogen chain: a) Value of
the 4 occupied orbitals for a Hydrogen chain of length 8 along the chain. Dashed lines mark
atom positions. While the canonical orbitals are non-zero along the entire chain, the localized
orbitals decay rapidly from their centers, essentially corresponding to chemical bonds between 2
neighboring atoms. b) Scatter-plot of the expansion coefficients ckJ for each orbital k and atom
J for chains with varying number of atoms N . In the case of localized orbitals (right panel), the
coefficients for large chains are mostly identical to the features found in smaller chain, enabling
efficient generalization. For the canonical orbitals (left panel) coefficients present in short chains
do not re-appear in longer chains, rendering generalization more difficult.

the entire chain, the localized orbitals have most of their contribution centered on one pair of
Hydrogen atoms each, essentially corresponding to chemical bonds. Localized orbitals also lead to
expansion coefficients which are consistent across atom positions and system sizes (see fig. 1.1b),
aiding generalization across system sizes.

Non-uniqueness of orbital descriptor One issue of using the expansion coefficients ck of
mean-field orbitals as descriptors is that they are not unique. Methods such as Hartree-Fock
iteratively solve a generalized eigenvalue problem and the coefficients ck are the eigenvectors
corresponding to the Norb lowest eigenvalues ϵk. If eigenvalues are degenerate then any linear
combination of the eigenvectors in the degenerate subspace is also an eigenvector and thus a
potential solution obtained by the mean-field method. Even if the eigenvalues are not degenerate
there is an ambiguity in the sign of the eigenvector: For every eigenvector ck, also −ck is an
eigenvector to the same eigenvalue and it is essentially random whether the mean-field method
yields ck or −ck. This means that for the same molecule given by R,Z different orbital descriptors
c may be obtained, yielding different wavefunctions and energies.
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There are several potential strategies to overcome this issue: One could canonicalize the orbitals,
e.g. by projecting c on a fixed vector v and choosing the sign of c such that ⟨c,v⟩ > 0. For
example by choosing vkIν = 1 we enforce that the mean of c > 0. However this approach is
ill-defined for c ⊥ v and yields discontinuous features around c ⊥ v. In practice, for localized
orbitals, canonicalization works well and is empirically stable.

Alternatively one could construct features from ck, which contain all information but are invariant
w.r.t. the sign of ck. One example of such an invariant representation proposed by [32] is to use
an outer product ckc

T
k . While this works in principle it also substantially increases the dimension

of the input feature, potentially increasing computational cost.

Lastly, one can choose the functions f, g in eq. (1.89) to be symmetric with respect to the sign of
the input ckI . In particular by choosing g to be even, i.e. g(−ckI) ≡ g(ckI) and f to be odd, i.e.
f(−ckI) ≡ −f(ckI), the resulting orbitals become equivariant to the sign of ck. This leads to
energies that are invariant to the sign of c (thus rendering the non-unique sign of c irrelevant)
and simplifies pretraining of the orbitals against a mean-field reference. To obtain an even or odd
function from an arbitrary function f , one can simply evaluate it on the original input as well as
the input with the opposite sign:

f even(x) := f(x) + f(−x) fodd(x) := f(x)− f(−x) (1.94)

Properties Comparing the TAOS against the desired properties of a transferable ansatz listed
in section 1.6.2, they meet many of them. The ansatz has a constant parameter count, independent
of system size. The wavefunction is invariant under permutation of atoms as long as the electron-
embeddings hi are permutation invariant, which is easily achieved using message passing neural
networks.

When using an odd function f to predict the backflow-weights the wavefunction is also local
and size extensive. If a system is comprised of two independent subsystems A,B, which are so
far separated that interactions between the two systems can be ignored, the total (mean-field)
Hamiltonian HAB corresponds to the sum of the Hamiltonians for each of the subsystems. In
matrix-form this means

HAB =

(
HA 0
0 HB

)
, (1.95)

and the eigenvectors are of the form

cABk =

(
ckA
0

)
k = kA = 1 . . . NA

orb (1.96)

cABk =

(
0

ckB

)
k = NA

orb + kB , kB = 1 . . . NB
orb, (1.97)

i.e. the eigenvectors are only non-zero on one of the two subsystems and correspond to the
eigenvectors of the subsystem Hamiltonians. If the orbital features ck are only non-zero on one
of the subsystems, then also the odd function f is non-zero only on atoms belonging to this
subsystem. The Slater Matrix Φik is therefore block-diagonal

Φ =

(
ΦA 0
0 ΦB

)
, (1.98)

and the wavefunction therefore factorizes into the product of the wavefunctions for the two
subsystems.
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The only desirable symmetry not captured by this ansatz is the rotational symmetry. While
rotation of a molecule leads to a predictable transformation of the basis coefficients c, the
subsequent functions f, g currently do not exploit this symmetry.

Variations Throughout the publications that form the core of this thesis [20, 33, 34] several
variations of the TAOs have been used, which are discussed in greater depth in the particular
publications. Possible variations include:

• Orbital GNN: Instead of using the orbital features ckI directly, it can be advantageous
to allow exchange of information between different nuclei J for each orbital k. This can
be achieved by a graph neural network (GNN) acting independently on each orbital k, by
using layers of the form

cl+1
kI =

∑

J

MLP(RI −RJ)⊙MLP
(
clkJ
)
. (1.99)

• Additional orbital features: Beyond the orbital expansion coefficients ck, also other
orbital specific features can be included in the feature vector. In particular orbital energy
ϵk or the mean position Rorb

k of the orbital can be concatenated to ckI to augment the
orbital descriptor.

• Electron-nucleus embeddings: Since almost all terms in eq. (1.89) are given as a sum
over nuclei, it is somewhat natural to also extend the electron embeddings to not represent
a single electron hi, but instead represent an interaction hiJ between electron i and nucleus
J . This generalization is particular natural for embeddings such as Moon [14] where the
final electron embedding is given by a sum over such hiJ embeddings. Simply omitting this
sum and instead combining it with the sum of eq. (1.89) yields the electron-nucleus TAOs
eq. (1.100)

Φik =

Nnuc∑

J=1

⟨f(ckJ),hiJ⟩ e−g(ckJ )|ri−RJ |. (1.100)

For periodic systems this formulation is more expressive than the TAOs of eq. (1.89) as
shown in the appendix of [34].

1.7 Sampling

1.7.1 From integration to sampling

To compute the expectation value of some operator O for a given unnormalized wavefunction ψ,
the following integral must be evaluated:

⟨O⟩ψ =
1∫

ψ∗(r)ψ(r)dr

∫
ψ∗(r)(Oψ)(r)dr (1.101)

Common examples for O are the Hamiltonian operator H – the expectation value of which
corresponds to the energy – or the position operator X̂ := 1

nel

∑
i ri, which yields the mean

electron position. These integrals are in general hard to evaluate, because there is no analytic
closed form and numerical integration is hard due to the high dimensionality of the integrand
(being 3× nel).
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The key trick of Monte Carlo integration is to simply divide and multiply by ψ in the second
integral, yielding the following expression (the dependence of ψ on r has been dropped for
clarity):

⟨O⟩ψ =
1∫

ψ∗ψdr

∫
ψ∗Oψdr (1.102)

=
1∫

ψ∗ψdr

∫
ψ∗ψ

Oψ

ψ
dr (1.103)

=

∫
p(r)

Oψ

ψ
dr (1.104)

=

〈
Oψ

ψ

〉

r∼p
(1.105)

with

p(r) :=
|ψ(r)|2∫
|ψ(r′)|2dr′ (1.106)

Since p(r) is positive (because of | · |2) and its integral is 1 (because of the normalization in the
denominator), it corresponds to a probability density. Equation (1.104) is the definition of the
expectation value for Oψ

ψ , given that the samples r are distributed according to the probability

density p(r).

Therefore, estimating the original integral eq. (1.101) is equivalent to estimating the expectation
value in eq. (1.105). To estimate this expectation value, one samples Ns iid electron configurations
r distributed according to the probability distribution p (which in turn is proportional to |ψ(r)|2)
and computes the mean of Oψψ :

⟨O⟩ψ ≈
1

Ns

Ns∑

n=1

(Oψ)(rn)

ψ(rn)
(1.107)

Note that the index n here does not run over the number of electrons, but over the number of
samples. Each rn is a full set of electron positions in Rnel×3.

According to the Central Limit Theorem the variance of eq. (1.107) approaches 1
Ns

var(Oψψ ) as
Ns →∞. The expected approximation error does therefore not depend on the dimensionality of
the problem and can in principle be systematically improved by drawing more samples, but only
converges at the relatively slow rate of 1√

Ns
that is typical for Monte Carlo Methods. Note however

that if Oψψ has low variance, even a small number of samples yields an accurate estimate of ⟨O⟩ψ.
One particularly important case of this energy estimation: As ψ approaches an eigenstate (e.g.
the ground-state ψ0),

Hψ
ψ approaches the corresponding energy eigenvalue, which is a constant

and thus has zero-variance. Therefore as optimization of a VMC wavefunction progresses, not
only does the energy of the wavefunction ansatz decrease, also the uncertainty of this energy
decreases as well.

1.7.2 Sampling using Markov Chain Monte Carlo

Equation (1.107) shifts the problem of integration to a problem of sampling: How can we draw
samples r that are distributed according to some given high-dimensional probability distribution
p(r)? While drawing samples is easy for some specific distributions (e.g. samples from a uniform
distribution or a multivariate Gaussian distribution), sampling from an arbitrary distribution is
non-trivial.

30



The Metropolis-Hastings algorithm A simple, but effective algorithm to draw a sample
from an arbitrary probability distribution (algorithm 1) was proposed by Metropolis et al.1

and generalized by Hastings [36]. This algorithm produces a Markov chain of samples rn with

Algorithm 1 Metropolis-Hastings sampling

Require: Probability density p(r), proposal distribution q(rp|rn), initial configurations r0,
number of steps N
for n = 0 to N − 1 do

rp ∼ q(rp|rn) ▷ Propose new configuration rp

a = min
(
1,

p(rp)q(rn|rp)
p(rn)q(rp|rn)

)
▷ Compute acceptance probability a

if a ≥ RandomUniform(0, 1) then
rn+1 ← rp ▷ Accept the proposal with probabilty a

else
rn+1 ← rn ▷ Reject the proposal with probabilty 1− a

end if
end for
return rN ▷ In the limit of N →∞, rN is distributed according to p(r)

stationary distribution p. Thus, given a suitable proposal function q, the algorithm produces a
sample rN that is distributed according to p in the limit of N →∞. Intuitively, over multiple
steps n the sample tends to move towards high-probability regions because proposals towards
higher probability are always accepted, while proposals towards lower-probability regions are often
rejected. Because there is some chance to accept proposals towards low-probability regions, the
algorithm does not only return the value with highest probability, but a distribution of samples.
Figure 1.2a depicts the convergence of the distribution of samples towards the target distribution
p for a simple 1D example. The approach of sampling using a Markov Chain is generally known as
Markov Chain Monte Carlo (MCMC). The Metropolis-Hastings (MH) algorithm is one particular
algorithm to generate stochastic transitions between states,which ensure that the Markov Chain
converges to the targeted stationary distribution.

Sketch of proof of correctness A Markov Chain converges to its stationary distribution
π(r) if the chain is ergodic (meaning that any state can transition to any other state in a finite
number of steps) and a stationary distribution exists. A sufficient condition[36] for the existence
of a stationary distribution π(r) is known as detailed balance

π(rn)k(rm|rn) = π(rm)k(rn|rm), (1.108)

where k(rm|rn) denotes the probability of transitioning from configuration rn to configuration
rm. The Metropolis-Hastings algorithm is one way to construct a transition probability kernel k
that satisfies detailed balance and has the target distribution p as stationary distribution π.

Detailed balance (DB) is sufficient for the existence of a stationary distribution, because the

1This paper from 1953 has a very illustrious author list: Co-authors of Nicholas Metropolis were Augusta Teller
(who developed the initial implementation), Arianna Rosenbluth (who developed the final implementation), and
their husbands Marshall Rosenbluth (who was later known as the ”pope of plasma physics” and chief scientist at
ITER) and Edward Teller (the ”father of the hydrogen bomb”). The paper also bears the great title ”Equation
of State Calculations by Fast Computing Machines”, tempting the author of this thesis to name it ”Neural
Wavefunctions using Very Fast Computing Machines”.
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Figure 1.2: 1D example of MCMC on a 1D density p(r) consisting of two Gaussians. The initial
configurations r0 are drawn from a single Gaussian distribution. a: Histogram of samples after
different number of MCMC steps n. After n ≈ 100 steps the distribution of rn aligns with the
target distribution p. b: Path of a single sample. Subsequent samples are strongly correlated,
depicting two distinct time-scales: A short time-scale corresponding to moves within a density
peak and a long time scale corresponding to moves between the two peaks.

distribution πn+1 after a step is identical to the distribution πn before the step:

πn+1(r) =

∫
πn(r

′)k(r|r′)dr′ (1.109)

DB
=

∫
πn(r)k(r

′|r)dr′ (1.110)

= πn(r)

∫
k(r′|r)dr′ (1.111)

= πn(r). (1.112)

The Metropolis Hastings algorithm satisfies detailed balance, with stationary distribution p. For
rn = rm it is trivially satisfied. For rn ̸= rm, the transition probability k(rm|rn) is given by the
product of the corresponding proposal times the probability of it being accepted (since rn ̸= rm
it cannot have been rejected)

k(rm|rn) = q(rm|rn)paccept(rn → rm) (1.113)

= q(rm|rn)min

(
1,
p(rm)q(rn|rm)

p(rn)q(rm|rn)

)
. (1.114)

Thus detailed balance for the MH-update is satisfied, since

p(rn)k(rm|rn) = p(rn)q(rm|rn)min

(
1,
p(rm)q(rn|rm)

p(rn)q(rm|rn)

)
(1.115)

= min
(
p(rn)q(rm|rn), p(rm)q(rn|rm)

)
, (1.116)

and the same result can be obtained when flipping the initial indices n,m. Therefore

p(rn)k(rm|rn) = p(rm)k(rn|rm), (1.117)

the MH-algorithm satisfies detailed balance and its stationary distribution is given by p.
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Practical considerations A common choice for the proposal function q(rp|rn) is a multivariate
Gaussian distribution centered around rn and variance s2

q(rp|rn) ∝ exp

(
− 1

2s2
||rp − rn||2

)
(1.118)

where s is a tuneable parameter known as the step size. It is a valid choice, because in principle
any configuration can be reached from any other configuration in a single step (since the
Gaussian distribution has support on the whole domain) and thus the proposal satisfies ergodicity.
Furthermore the fact that the Gaussian is symmetric in rp and rn allows to omit the q-ratio on
the calculation of the acceptance rate since it is always 1. An alternative to a Gaussian Proposal
distribution is to bias proposals towards increasing probability density to increase the probability
of acceptance. This is known as Metropolis Adjusted Langevin Algorithm (MALA) and increases
sampling efficiency[18] at the expense of higher computational cost to evaluate ∇p.

rp = rn + τ∇ log p(rn) + sN (0, 1) (1.119)

The choice of the step size s is important to achieve fast convergence and mixing of the Markov
Chain: Choosing a very small step size only allows very small changes in r, leading to slow
convergence. Choosing a very large step size leads to proposed configurations rp that are far from
the original configuration rn and are very often rejected, thus not moving at all. To address this
issue, one can set a target acceptance rate of ≈ 50% and automatically adjust s to approximately
reach this acceptance rate.

One important aspect of the Metropolis-Hastings algorithm is that its acceptance criterion only
depends on the ratio of probability densities, but not p itself. Therefore p does not have to be
normalized (since any normalization would cancel out), allowing to sample directly from any
unnormalized density |ψ|2.
In principle any initial distribution can be used for the samples r0, but choosing an initial
distribution that resembles the target distribution is obviously advantageous. Therefore the
typical approach is to first take a large number of steps Nburn-in for the samples to converge
to the target distribution p. Then, to obtain more samples one does not start again from the
initial distribution, but uses the latest sample as starting point for the next Nintermed. steps to
obtain a new sample. In practice Nburn-in ≫ Nintermed., for sampling from a wavefunction of a
small molecule Nburn-in ≈ O(103), while Nintermed. ≈ O(101). A disadvantage of this approach
is that subsequent samples are not fully independent of each other, but can still be correlated
if Nintermed. is too small. Figure 1.2b shows the trajectory of a single sample as a function of
MH-steps, clearly showing correlations between subsequent samples. This issue is particularly
pronounced when p has multiple maxima that are separated by regions of low probability, because
it takes many steps to transition between these maxima.

1.7.3 Sampling directly from a generative model

Besides using an arbitrary model for ψ (and thus implicitly p) and using Metroplis-Hastings to
sample, one can in principle also design models which allow direct sampling from the probability
distribution.

One option are Normalizing Flows, a type of model that maps an easy to sample probability
distribution (e.g. a Gaussian) to the target probability distribution p. It has been applied to the
Schrödinger Equation, but only in the substantially simplified 1D case [37].
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Another option are autoregressive models, which generate a full configuration of electrons
one electron at a time, by conditioning the probability distribution on all previously added
electrons:

p(r1, . . . rnel
) = p(r1) p(r2|r1) p(r3|r1, r2) · · · p(rnel

|r1, . . . rnel−1) (1.120)

Instead of sampling from the 3× nel-dimensional probability distribution (the LHS of eq. (1.120))
all at once, instead one samples nel times from a 3-dimensional probability distribution (each
term on the RHS of eq. (1.120)). This structure is the currently dominant paradigm in large
language models, which autoregressively sample one token / word at a time, from a probability
distribution which is conditioned on the previously generated tokens [38]. This approach has
also been applied to wavefunctions, but so far only for model Hamiltonians [39] and molecules in
second quantization [23]. In both cases the state space is discretized, simplifying the sampling
from the low-dimensional conditional probability distributions.

1.8 Optimization

1.8.1 Gradient of the energy

The expectation value of the energy ⟨E⟩ for an unnormalized wavefunction ψ is given by

⟨E⟩ψ =

∫
ψ∗(r)Hψ(r)dr∫
ψ∗(r)ψ(r)dr

=
〈
E(r)

〉
r∼|ψ(r)|2

, (1.121)

where E(r) := Hψ(r)
ψ(r) is the local energy (see eq. (1.105)) and ⟨·⟩ denotes the expectation value.

For brevity, in the following the notation will be shortened by omitting the subscript of the
expectation value (which will always be taken using the probability distribution |ψ2|) and omitting
the argument r in the integrals (which will always be taken over dr):

⟨E⟩ =
∫
ψ∗Hψ∫
ψ∗ψ

=
1

Ω

∫
ψ∗Hψ (1.122)

Ω :=

∫
ψ∗ψ. (1.123)

For a real-valued wavefunction with real-valued parameters, the gradient is given by

∇⟨E⟩ =
〈(
∇ log |ψ|2

)
∆E

〉
(1.124)

∆E(r) := E(r)− ⟨E⟩ . (1.125)

For the derivation and the more general case of a complex-valued wavefunction, see below.
Throughout this section the subscript θ will be dropped for the gradient (∇ := ∇θ).

Properties of the gradient One interesting thing to note is that the energy gradient is given
as the correlation between the gradient of the wavefunction and the local energies. In particular it
does not depend on derivatives of the local energy w.r.t. θ, but only on derivatives of ψ w.r.t. θ.
This is of importance, because computing the local energy E already involves second derivatives
of ψ w.r.t. the electron coordinates r (required to compute the kinetic energy). Computing the
energy gradient does however not require third derivatives, but only first derivatives of ψ w.r.t.
θ and second derivatives w.r.t. r. Another consequence of this dependence on ∆E is that the
gradients vanish as ψ approaches an eigenstate (since E(r) ≡ ⟨E⟩ for an eigenfunction). This
is expected for the targeted minimum of the ground-state, but also holds true for any other
higher-lying excited state.
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Energy clipping In practice the expectation value in eq. (1.124) is approximated using a
finite number of samples, which have been drawn from the distribution |ψ|2 using Monte Carlo
sampling (see section 1.7). One common issue is that large outliers of the sampled local energies
E(r) can cause large gradients, which potentially render the optimization unstable. To remedy
this issue it has been proposed to clip the local energies for gradient computation [10], following
the following scheme:

Ecenter = AVERAGE(E) (1.126)

∆E = CLIP(E − Ecenter) (1.127)

For the function AVERAGE either the mean, the median, or the mean of the clipped samples
from the previous step have been proposed. For the function CLIP either thresholding[10] or
soft-thresholding[7] have been proposed:

CLIPhard(x) = max(−δ,min(δ, x)) (1.128)

CLIPsoft(x) = δ tanh
(x
δ

)
(1.129)

The clipping width δ can be chosen as some measure of spread of the local energies, e.g. the
standard deviation or the mean absolute error

δstd =

√√√√ 1

Ns

Ns∑

n=1

(∆En)2 (1.130)

δMAE =
1

Ns

Ns∑

n=1

|∆En|. (1.131)

Proof of energy gradient The energy in eq. (1.121) can be written as

⟨E⟩ =
∫
ψ∗Hψ∫
ψ∗ψ

=
1

Ω

∫
ψ∗Hψ (1.132)

Ω :=

∫
ψ∗ψ, (1.133)

where Ω denotes the normalization. The gradient of eq. (1.122) is given by

∇⟨E⟩ = 1

Ω

∫
(∇ψ∗)Hψ − 1

Ω2
(∇Ω)

∫
ψ∗Hψ +

1

Ω

∫
ψ∗H (∇ψ) . (1.134)
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The first two of these three terms can be simplified as follows:

1

Ω

∫
(∇ψ∗)Hψ =

∫
ψ∗ψ
Ω

∇ψ∗

ψ∗
Hψ

ψ
(1.135)

=

∫ |ψ|2
Ω

(∇ logψ∗)E (1.136)

= ⟨(∇ logψ∗)E⟩ (1.137)

1

Ω2
(∇Ω)

∫
ψ∗Hψ = ⟨E⟩ 1

Ω

∫
∇(ψ∗ψ) (1.138)

= ⟨E⟩ 1
Ω

∫
ψ∗(∇ψ) + ψ(∇ψ∗) (1.139)

= ⟨E⟩
∫ |ψ|2

Ω

(∇ψ
ψ

+
∇ψ∗

ψ∗

)
(1.140)

= 2 ⟨E⟩ ⟨Re[∇ logψ]⟩ (1.141)

To simplify the third term, we use the fact that H is a hermitian operator to apply H to ψ∗

instead of ∇ψ:
1

Ω

∫
ψ∗H (∇ψ) = 1

Ω

∫
(∇ψ) (Hψ∗) (1.142)

=

∫ |ψ|2
Ω

∇ψ
ψ

Hψ∗

ψ∗ (1.143)

= ⟨(∇ logψ)E∗⟩ (1.144)

Putting everything together, we get

∇⟨E⟩ = ⟨(∇ logψ)E∗⟩+ ⟨(∇ logψ)E∗⟩∗ − 2 ⟨E⟩ ⟨Re[∇ logψ]⟩ (1.145)

= 2Re [⟨(∇ logψ)E∗⟩]− 2 ⟨E⟩ ⟨Re[∇ logψ]⟩ (1.146)

If the parameters are constrained to be real-valued, only the real part of the gradient is relevant
for the parameter update. It is given by

Re [∇⟨E⟩] =2Re [⟨(∇ logψ)E⟩]− 2 ⟨Re [∇ logψ]⟩ ⟨Re [E]⟩ (1.147)

=2 ⟨Re [∇ logψ] Re [E]⟩+ 2 ⟨Im [∇ logψ] Im [E]⟩ (1.148)

− 2 ⟨Re [∇ logψ]⟩ ⟨Re [E]⟩ (1.149)

=2 ⟨Re [∇ logψ] Re [E − ⟨E⟩]⟩+ 2 ⟨Im [∇ logψ] Im [E]⟩ . (1.150)

The wavefunction is often expressed in log-space, by parameterizing ψ as

ψ = e
1
2ρ+iϕ, (1.151)

with real-valued functions ρ(r) and ϕ(r), yielding

ρ = log |ψ|2 ϕ = argψ (1.152)

Re [logψ] =
1

2
ρ Im [logψ] = ϕ (1.153)

Then the real part of the gradient corresponds to

Re [∇⟨E⟩] =
〈
∇ρ Re [E − ⟨E⟩]

〉
+ 2
〈
∇ϕ Im [E]

〉
(1.154)

36



Because H is hermitian, the expectation value of the energy is real valued. We can therefore
subtract a term proportional to Im ⟨E⟩ without changing the expectation value, leading to the
final expression for the energy gradient of a complex wavefunction:

∆E := E − ⟨E⟩ (1.155)

Re [∇⟨E⟩] =
〈
∇ρ Re [∆E]

〉
+ 2
〈
∇ϕ Im [∆E]

〉
(1.156)

1.8.2 Stochastic reconfiguration as a preconditioner

The energy can be minimized using (stochastic) gradient descent (SGD) using the gradient from
eq. (1.124) (for a real-valued wavefunction) or eq. (1.156) (for a complex-valued wavefunction).
The update rule for the parameters can be as simple as

θt+1 = θt − λ (∇E) , (1.157)

with a given learning rate λ or involve some form of momentum, e.g. using the Adam optimizer
[40]. However, convergence of optimization can be substantially accelerated by not using the
energy gradient directly (as in eq. (1.157)), but rather preconditioning it with the following matrix
S ∈ RNparam×Nparam

Sµν :=
〈∂ logψ

∂θµ

∂ logψ

∂θν

〉
−
〈∂ logψ

∂θµ

〉〈∂ logψ
∂θν

〉
, (1.158)

and using this preconditioned gradient for stochastic gradient descent

θt+1 = θt − λS−1 (∇E) . (1.159)

The update rule of eq. (1.159) is known as Stochastic Reconfiguration in the physics community
[41] (where S is then referred to as the Quantum Geometric Tensor) and is very closely related
to Natural Gradient Descent in the machine learning community [43] (where an object closely
related to S is referred to as the Fisher information matrix). The following derivations, which
have been adapted from [41], should give some perspective on why using S as a preconditioner is
a sensible choice.

1.8.3 Stochastic reconfiguration as a local metric

When performing (stochastic) gradient descent, a crucial choice is the step size λ. One way of
formulating this is to consider as loss L the energy plus an additional regularization term, which
penalizes large changes δ in parameter space.

L = ⟨E⟩+ λ

2
δT δ (1.160)

δ := θt+1 − θt (1.161)

When minimizing eq. (1.160) with respect to all parameters θµ the classical SGD update rule is
recovered:

∂L
∂θµ

=
∂E

∂θµ
+ λδµ

!
= 0 (1.162)

δ = −λ∇E. (1.163)

SGD with a given learning-rate λ therefore minimizes the energy, while at the same time minimizing
the Euclidean norm of the parameter update. While this is not an unreasonable choice per se, it
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would be better to minimize the energy, while making minimal changes to the wavefunction. After
all, the wavefunction might be very sensitive to some parameters and insensitive to others. We
would therefore like to make small steps for sensitive parameters and larger steps for insensitive
parameters.

The following metric can be used to assess the distance between two unnormalized wavefunctions
ψ and ϕ (for this section the wavefunctions are assumed to be real-valued):

s(ϕ, ψ)2 = 1− ⟨ψ, ϕ⟩2
⟨ψ,ψ⟩ ⟨ϕ, ϕ⟩ (1.164)

Equation (1.164) corresponds to 1 minus the squared overlap of the normalized wavefunctions
and is thus 0 for ϕ ≡ ψ and 1 for ϕ ⊥ ψ. Using eq. (1.164) as a metric to regularize the loss
yields

L = ⟨E⟩+ λ

(
1− ⟨ψθ, ψθ+δ⟩2
⟨ψθ, ψθ⟩ ⟨ψθ+δ, ψθ+δ⟩

)
. (1.165)

The updated wavefunction ψθ+δ can be expressed as Taylor expansion up to first order,

ψθ+δ ≈ ψθ + δT∇ψθ, (1.166)

yielding (subscripts θ omitted for clarity):

L = ⟨E⟩+ λ


1−

〈
ψ,ψ + δT∇ψ

〉2

⟨ψ,ψ⟩
〈
ψ + δT∇ψ,ψ + δT∇ψ

〉


 . (1.167)

Expanding the regularization term, dividing the denominator and enumerator by ⟨ψ,ψ⟩2, and
introducing O yields

O : =
∇ψ
ψ

= ∇ log |ψ| (1.168)

L = ⟨E⟩+ λ


1−

(
1 + δT ⟨ψ,∇ψ⟩

⟨ψ,ψ⟩

)2

1 + 2δT ⟨ψ,∇ψ⟩
⟨ψ,ψ⟩ + δT ⟨∇ψ,∇ψ⟩

⟨ψ,ψ⟩ δ


 (1.169)

= ⟨E⟩+ λ


1−

(
1 +

〈
δTO

〉)2

1 + 2δT ⟨O⟩+ δT
〈
OOT

〉
δ


+O(|δ|3). (1.170)

Expanding the denominator up to second order in δ (using (1+x)−1 ≈ 1−x+x2) and multiplying
all terms finally yields

L = ⟨E⟩+ λδTSδ +O(|δ|3) (1.171)

S =
〈
OOT

〉
− ⟨O⟩ ⟨O⟩T (1.172)

The regularized loss in eq. (1.171) has the same structure as the simple eq. (1.160): The original
loss + a quadratic regularization term – the only difference being that this time the metric is
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Figure 1.3: 1D toy example for 2-parameter wavefunction: a) Plot of ground-state
wavefunction ψGS, initial wavefunction ψ0, and the resulting wavefunctions after update steps
according to stochastic gradient descent (SGD) and stochastic reconfiguration (SR). b-d) Contour-
plots as a function of wavefunction parameters θ1 and θ2 (darker colors correspond to lower
values). b) Energy expectation value of corresponding wavefunction. c,d) Distance from initial
parameter vector θ0 measured in Euclidean metric and the metric induced by the preconditioner
S.

given by S instead of the Euclidean-norm. When minimizing this regularized loss one obtains the
stochastic reconfiguration update rule (up to a factor of 2 in the learning rate)

δ = −2λS−1 (∇E) . (1.173)

Note that S has been derived here using eq. (1.164) as distance metric. The same result (up to a
constant factor) can be obtained by expanding the Kullback-Leibler divergence – a well known
divergence to measure the distance between probability distribution – between the probability
distributions |ψ2

θ | and |ψθ+δ|2. If the probability distributions are normalized then ⟨O⟩ ≡ 0,
simplifying eq. (1.172) to the first term and the corresponding update rule of natural gradient
descent.

1D toy system with 2 parameters fig. 1.3 demonstrates the effect of this preconditioning
on a 1D-example (a single particle in a parabolical potential) with a wavefunction that has only
two parameters:

ψ(x) = e
− 1

2

(
x−θ2
2σ(θ1)

)2

, (1.174)
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with the sigmoid function σ(θ) = 1
1+e−θ . This system has its ground-state at θ1 = θ2 = 0, depicted

as ψGS in fig. 1.3a and the corresponding point in parameter-space θGS in fig. 1.3b.

Starting from an arbitrary initial wavefunction ψ0 (and corresponding parameters θ0), two distinct
new wavefunctions (and corresponding parameters) are depicted. The parameters θSGD (and its
wavefunction ψSGD) are obtained from the gradient descent update rule θSGD = θ0 − λSGD∇E.
The parameters θSR (and its wavefunction ψSR) are obtained from the stochastic-reconfiguration
update rule θSR = θ0 − λSRS−1∇E. The learning rates λSGD and λSR are chosen such that
the Euclidean distance in parameter space is identical in both case (as depicted in fig. 1.3c).
However, the change of the wavefunction is markedly different: The SR-update rule leads to a
much smaller change in the wavefunction (compared to the SGD update rule). This can be seen
from the smaller S-distance in fig. 1.3d as well as visually when comparing ψSR and ψSGD in
fig. 1.3a. Overall this leads to a lower energy after the update step (as can be seen in fig. 1.3b)
and will lead to overall faster convergence towards the ground-state when iterating. The effect of
the preconditioning is that the SR-update rotates the update step towards larger updates along
the θ1 parameter, which is less sensitive in this point of the parameter space.

1.8.4 Stochastic reconfiguration as a projection method

For real-valued wavefunctions there is an alternative view of eq. (1.159), which leads to the same
result. It can be shown that in the limit of infinitesimal step sizes λ, stochastic reconfiguration
is equivalent to applying the operator e−Hλ (with the Hamiltonian H) and then projecting the
resulting wavefunction onto the space spanned by ψθ and ∇ψθ. Because the operator e−Hλ is
identical to the time-evolution operator e−iHt for an imaginary time t = iλ, this method is also
known as imaginary time evolution in the physics community [44].

Exact imaginary time evolution leads to an exponential decay of the energy as can be seen by
decomposing any initial wavefunction ψ into the eigenstates of ψn of H.

ψ =

∞∑

n=0

cnψn (1.175)

Applying the exponential operator t times, thus yields

ψt = e−Hλtψ (1.176)

=

∞∑

n=0

cne
−Hλtψn (1.177)

=

∞∑

n=0

cne
−Enλtψn (1.178)

= e−E0λt

(
c0ψ0 +

∞∑

n=1

cne
−(En−E0)λtψn

)
. (1.179)

As t→∞ all contributions from states i > 0 decay exponentially, with the relevant time-scale
1

En−E0
. Therefore as long as the initial state has non-zero overlap with the groundstate (c0 ̸= 0)

and the groundstate is non-degenerate (En > E0 ∀ n > 0) this method will converge to the
groundstate. The following proof that stochastic reconfiguration is equivalent to imaginary time
evolution + projection is adapted from [41].

For a small step size λ the exponential can be expanded up to first order in λ.

e−Hλ ≈ 1−Hλ (1.180)
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At every optimization step t, one implicitly performs 2 steps: Imaginary time evolution of ψ,
yielding ψ̂, and projection of ψ̂ onto the basis spanned by ψ and its derivatives.

ψ̂ = (1−Hλ)ψ Imag. time evolution (1.181)

ψ̂
!
= Cψ +

Nparam∑

µ=1

δµ
∂ψ

∂θµ
Projection (1.182)

To find the expansion coefficients C and δµ one takes the scalar products of ψ̂ with all basis
functions, yielding eq. (1.183) for the scalar product with ψ and Nparam equations eq. (1.184) for
each derivative w.r.t. θν .

∫
ψ(1−Hλ)dr = C

∫
ψ2dr +

Nparam∑

µ=1

δµ

∫
ψ
∂ψ

∂θµ
dr (1.183)

∫
∂ψ

∂θν
(1−Hλ)ψdr = C

∫
∂ψ

∂θν
ψdr +

Nparam∑

µ=1

δµ

∫
∂ψ

∂θµ

∂ψ

∂θµ
dr (1.184)

Dividing each equation by the normalization
∫
ψ2dr allows to express the equations in terms of

expectation values

1− ⟨E⟩ = C +

Nparam∑

µ=1

δµ ⟨Oµ⟩ (1.185)

⟨Oν⟩ − ⟨OνE⟩ = C ⟨Oν⟩+
Nparam∑

µ=1

δµ ⟨OνOµ⟩ (1.186)

with the local energy E(r) = Hψ
ψ (r) and Oν(r) =

∂ logψ
∂θν

(r). Multiplying eq. (1.185) with ⟨Oν⟩
and subtracting from each of eq. (1.186) yields

−
(
⟨OνE⟩ − ⟨E⟩ ⟨Oν⟩

)
=

Nparam∑

µ=1

(
⟨OνOµ⟩ − ⟨Oν⟩ ⟨Oµ⟩

)
δµ (1.187)

The LHS corresponds exactly to the gradient of the energy (see eq. (1.124)) and the expectation
values on the RHS correspond to S. Casting it in matrix form, again reveals the stochastic
reconfiguration update rule

−∇E = Sδ =⇒ δ = −S−1∇E (1.188)

1.8.5 Stochastic reconfiguration in practice

So far the matrix S−1 was always assumed as given, but computing it in practice is hard. The first
complication is that when S is being estimated from Ns samples it is at most of rank Ns:

Sµν = ⟨OµOν⟩ − ⟨Oµ⟩ ⟨Oν⟩ (1.189)

=
〈(
Oµ − ⟨Oµ⟩

)(
Oν − ⟨Oν⟩

)〉
(1.190)

≈
Ns∑

n=1

(
Oµ(rn)− ⟨Oµ(rn)⟩

)(
Oν(rn)− ⟨Oν(rn)⟩

)
(1.191)
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Therefore for typical values of Ns ≈ O(103) and Nparam ≈ O(106), S is rank deficient and
cannot be inverted. This is typically addressed via Tikhonov regularization with a small damping
constant ϵ:

Sreg = S + ϵ 1Ns
(1.192)

Another approach is to estimate S not only from the current batch, but as a moving average of
the estimates from past batches, thus increasing the rank of the estimator. This helps to reduce
Monte Carlo noise in the estimation but typically still requires regularization to avoid a singular
matrix S.

The second complication arises due to the size of S, which is of dimension Nparam × Nparam.
Therefore, for a neural network wavefunction with O(106) parameters, even storing this matrix
with O(1012) elements becomes impossible. Even worse, this large matrix must be inverted, an
operation that has computational cost O(Nparam

3) using Gaussian elimination. But don’t panic
[42], there are two viable routes in practice: Find a (sparse) approximation of S and invert it
exactly, or find a way to approximately invert S without fully materializing S.

KFAC KFAC (Kronecker-Factored Approximation of Curvature) [43] is of the first type, making
two approximations to S. First it assumes that there are no dependencies between parameters
belonging to different layers of the neural network, effectively assuming S to be block-diagonal.
Second it assumes that each remaining block can be expressed as an eponymous Kronecker
product of two smaller matrices. This allows inversion of the approximated S via inversion of
many small matrices, which is computationally feasible even for networks involving millions of
parameters. KFAC has first been applied to neural network wavefunctions by Pfau et al. [10] and
since been used widely throughout the neural wavefunction community, including all the papers
that form this thesis. While it is computationally efficient and can yield good results, it has two
downsides in practice. First, it involves approximations that cannot be systematically improved
upon. Second, the optimizer does not only require access to the wavefunction, energies and their
gradients, but also requires access to intermediate activations and gradients of the model. This
can introduce substantial complexity for practical implementation and leads to some unwanted
coupling between the wavefunction model and the optimizer.

Conjugate Gradient An alternative approach is to make no approximations to S, but to only
invert it approximately. One common approach is to use the Conjugate Gradient (CG) method
to compute S−1∇E without materializing S. CG only requires the repeated evaluation of the
matrix-vector product Sx for arbitrary vectors x. This can be obtained by a vector-jacobian-
product (VJP) followed by a jacobian-vector-product (JVP), which are implemented using
back-propagation and forward-mode differentiation respectively and don’t require materializing
the full jacobian.

Exploiting low-rank nature of S A very promising approach is to use the fact the regularized
Sreg is a sum of a full-rank, but easy to invert diagonal matrix (ϵ1), and a low-rank matrix S.
Inversion of Sreg can therefore be done using the Sherman-Morrison-Woodbury formula [45],
which only requires the inversion of a Ns × Ns matrix. This forms the basis for the MinSR
optimizer introduced by Rende et al. [46] and a variation named SPRING [47].

Explicit imaginary time evolution The observation that stochastic reconfiguration is equiv-
alent to imaginary time evolution with subsequent projection (section 1.8.4) can also be used
to directly design an optimizer which avoids S. This is achieved by alternating imaginary time
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evolution steps, with explicit projection:

ψ̂ = (1−Hλ)ψθ Imag. time evolution (1.193)

θ ← min
θ′

∫
|ψ̂ − ψθ′ |2dr Projection using gradient descent (1.194)

The minimization in eq. (1.194) can be performed using any gradient-based optimizer, e.g.
stochastic gradient descent or Adam. This method has been dubbed Supervised Wavefunction
Optimization [48]. While it avoids the preconditioning step, it comes at the extra cost of solving
a separate minimization problem (eq. (1.194)) at every step of the main optimizer.

1.8.6 Supervised pretraining of orbitals

So far only variational minimization of the energy, which requires no external reference data, has
been discussed. While variational optimization from randomly initialized parameters is in principle
sufficient to obtain groundstate wavefunctions, convergence can initially be slow and unstable.
This is because the initial wavefunction may be far from the groundstate wavefunction and the
samples drawn from it may initially insufficiently cover the relevant regions in configurational
space. For example, there may initially be very few samples close to the nuclei, although this
is typically the region with the highest electron density. To obtain a better initialization of
the parameters it has been proposed to pretrain the wavefunction against a given reference
wavefunction, to obtain a better starting point for subsequent variational optimization [10]. This
is achieved by minimizing the residual between the orbitals ϕ of the neural network wavefunction
and some reference orbitals ϕref, yielding the pretraining loss

Lsupervised =

nel∑

i,k=1

〈∣∣ϕrefik (r)− ϕik(r)
∣∣2
〉
r∼|ψref|2

. (1.195)

While pretraining can substantially accelerate subsequent variational optimization it risks biasing
the neural network towards a solution that is similar to the reference wavefunction. It has been
shown empirically that excessive pretraining can therefore deteriorate final accuracy [7]. It would
also seem intuitive that pretraining against a more accurate reference wavefunction ψref would
lead to better results, but it has also been shown empirically that this is not necessarily true:
Cheaper, less accurate reference wavefunctions, such as Hartree-Fock, can lead to better final
variational energies compared to more accurate reference wavefunctions like CASSCF [7].
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Chapter 2

Summary of Publications

The following briefly summarizes the papers, which form the core of this dissertation. Given that
the field of neural network wavefunctions has rapidly evolved over the past years, some of the
presented methods have been been superseded by more recent, better approaches. Therefore for
every paper a brief summary as well as some hindsight comments are given, highlighting for each
paper the findings which are still relevant and the things one would do differently today.

2.1 Gold-standard solutions to the Schrödinger equation us-
ing deep learning: How much physics do we need?

2.1.1 Paper summary

This paper (see appendix A, [7]) is the only paper among the included works which does not
concern itself with transferable wavefunctions, but rather focuses on solving the Schrödinger
equation for a single molecule at a time. The work is heavily based on the two major architectures
which had been published at that time: FermiNet [10, 49], using a large MLP-based embedding
combined with simple exponential envelopes, and PauliNet [12], using a graph convolutional
neural network and elaborate envelopes based on Hartree-Fock orbitals. The initial hypothesis
was that combining the FermiNet embedding (having substantially more parameters than the
PauliNet embedding) with the PauliNet orbitals (including more physical intuition) would yield
a superior wavefunction. Interestingly the opposite turned out to be the case: Using a graph
convolutional neural network as the embedding, combined with the simple exponential FermiNet
envelopes yielded a better architecture than either FermiNet or PauliNet. We demonstrated this
by computing for several small atoms and molecules the lowest variational energies known at the
time, hence the perhaps overly bold title of ”Gold-standard solutions”. The paper systematically
analyzes which changes contribute how much to the improvements in energy as depicted in
fig. 2.1.

The subtitle ”How much physics do we need?” allures to the counterintuitive observation that
using more intuition from physics can actually deteriorate accuracy. This is demonstrated for
two separate aspects: First, using physics inspired orbitals from a mean-field method performs
worse than using simple exponential envelopes. Second, more accurate supervised pretraining of
the wavefunction (either through more steps or a more accurate reference method) can actually
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Figure 2.1: Main result of [7], improvements in accuracy for three different systems.
This plot depicts the obtained groundstate energy for three distinct systems and breaks down
the contribution of various changes to the increased accuracy. Improvements presented in the
paper include an optimized set of hyperparameters, an embedding based on graph convolutions
(SchNet-like embedding), a local coordinate system, and improved parameter initialization for
heavier atoms.

deteriorate the final accuracy after variational training.

2.1.2 Hindsight comments

Most observations made in this paper still hold true and have informed subsequent work. Combin-
ing exponential envelopes with an expressive embedding (which improves upon FermiNet by using
some form of position dependent message passing) is still state of the art today. Also subsequent
work by the authors of PauliNet [18, 50] has used this type of architecture, instead of using
CASSCF orbitals. The observation that excessive supervised pretraining of the wavefunction
can induce biases that are hard to overcome in variational observation has also been seen in
[34].

In retrospect, there are three aspects which would be presented somewhat differently today: First,
hyperparameters do not necessarily have a 1:1 correspondence across codebases. Therefore the
presented ”improved” hyperparameters for FermiNet – while yielding substantially better results
in the DeepErwin codebase – may not lead to similar improvements in the original FermiNet
codebase, a point which was not clear at the time and should have been more clearly highlighted.
Second, the local coordinate systems, which were proposed to aid generalization in subsequent
multi-geometry work, have turned out to be too restrictive to express arbitrary wavefunctions
and have therefore not been used in later work. Lastly, the paper strongly emphasizes having
obtained the best published variational energies across several systems. While this was factually
true at the time of publication, subsequent architectures such as PsiFormer [15] have obtained
even lower energies. In such a fast-paced field, calling results ”gold-standard” appear ill-advised
in hindsight, even if true at the time.
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2.2 Solving the electronic Schrödinger equation for multiple
nuclear geometries with weight-sharing deep neural
networks

2.2.1 Paper summary

102 103 104

Steps / geometry

0

10

20

30

40

50

60

70

E
E M

RC
I /

 m
Ha

a Shared optimizaton
Independent optimization
Shared optimization
Chemical acc. (1 kcal/mol)

102 103 104

Steps / geometry

E
E M

RC
I /

 m
Ha

b Transfer of pre-trained weights
Trained from scratch
Transfer (same molecule)
Transfer (smaller molecule)
Chemical acc. (1 kcal/mol)

Figure 2.2: Main result of [13], shared optimization and transfer of pre-trained weights
to compute energies of ethene. Average energy relative to an accurate reference calculation
(MRCI: Multi reference Configurational Interaction) for the potential energy surface of Ethene
as a function of optimization steps. a) Training a single model to represent the wavefunction
for many geometries simultaneously substantially accelerates energy convergence compared to
performing independent calculations. b) Transferring these pretrained weights to new geometries
again leads to substantial speed-ups. This works well when transferring from different geometries
of the same molecule, but poorly when transferring weights pretrained on a smaller molecule
(methane).

This paper (see appendix B, [13]) marks the first in a series of papers developing neural network
wavefunctions, which are transferable across systems. Similarly to later works it proposes to
use a single neural network embedding for multiple geometries. Unlike later works, it does not
yet address the challenge of generating orbitals for different systems, but instead uses different
trainable orbital parameters for every geometry. The vast majority of trainable parameters
(≈ 95%) is shared across geometries, while a few weights (≈ 5%) are chosen differently for each
geometry.

The paper establishes two important ways to test transferable neural wavefunctions: The first
is shared training, where a single model with shared parameters is optimized to simultaneously
represent the groundstate wavefunction for several different geometries of a molecule (fig. 2.2a).
The second is the transfer of such a pretrained wavefunction to new, unseen systems (fig. 2.2b).
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The approach is demonstrated on toy-systems comprised of Hydrogen-atoms and several distorted
geometries of Ethene. In both cases shared optimization accelerates optimization by ≈ 10×
compared to independent optimization of a separate wavefunction for each system. When
transferring weights from a pretrained wavefunction to new geometries of the same molecule, even
larger speed-ups are observed.

2.2.2 Hindsight comments

The main idea of the paper – having a single wavefunction represent multiple geometries at
once – has proven to be a fruitful research direction. Both applications of such a transferable
wavefunction – shared optimization of a wavefunction for multiple geometries and transfer of
the parameters to new systems – have been further explored and improved upon in future work.
Furthermore the test systems (in particular ethene, twisted around the C=C bond) have been
used as a baseline for future work.

On the other hand, the specific architecture proposed turned out to be a poor choice. On the
one hand, it is based on the PauliNet architecture, which is based on incorporating Hartree-Fock
orbitals, an approach that later turned out to be inferior to the simpler FermiNet orbitals. On
the other hand, the necessity of having some of the weights be geometry specific limits the
transferability and usefulness of such a wavefunction. Concurrent work by Gao et al. [11], built
on the FermiNet architecture, managed to improve on several results presented in this paper
and managed to train a single wavefunction across geometries without the need for separate
parameters per geometry.

2.3 Towards a transferable fermionic neural wavefunction
for molecules

2.3.1 Paper summary

This paper (see appendix C, [20]) is one of the core contributions of this dissertation. It builds on
the previous work (section 2.2), but substantially extends it by introduction of the transferable
atomic orbitals (see section 1.6.4), a method to generate neural network orbitals based on features
extracted from a mean-field calculation. This change is significant because it no longer requires
separate trainable parameters for each system and enables training of a single model across
different molecules. The paper demonstrates the transfer capabilities of this approach on simple
test systems, comparing favorably against own prior work, as well as a concurrent proposal by
Gao et al. [14].

Optimizing this transferable wavefunction across diverse dataset of small molecules yields a
pretrained model, which can be used as an effective initialization for the wavefunction of new,
unseen molecules. Figure 2.3 demonstrates that fine-tuning such a pretrained wavefunction
model converges much faster in energy compared to optimizing the wavefunction from scratch.
Compared to fig. 2.2b, where the transfer only worked well when transferring to similar geometries
of the same molecule, the new approach works much better. When transferring the model to
new, unseen molecules which are of similar size as the ones in the training set (fig. 2.3a) it can
reach accuracies of ≈ 10 mHa with minimal training. Even transferring to new molecules which
are larger than the largest ones in the pretraining set (fig. 2.3b), yields substantial speed-ups in
convergence for these larger systems.
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Figure 2.3: Main result of [20], transfer of pretrained wavefunction model to new,
unseen molecules. Energy error relative to an accurate reference calculation (CCSD(T)-CBS)
as a function of optimization steps. Dashed line represents training of a new wavefunction model,
solid line represents fine-tuning of a wavefunction model which has been pretrained on a large
dataset of molecules. a) Performance when transferring the model to new molecules which
are similar (same number of non-hydrogen atoms) to the ones in the pretraining dataset. b)
Performance when transferring the model to new molecules which are larger than any molecule
in the pretraining dataset (up to 4 non-hydrogen atoms vs. maximum of 3 in the pretraining
dataset).

2.3.2 Hindsight comments

The approach proposed in the paper – using mean-field orbitals as inputs to obtain correlated
neural network orbitals – has served the authors well for subsequent work. At the same time there
are minor shortcomings which have been addressed in follow-up work, substantially increasing
the accuracy.

First, the embedding network used in this paper (essentially FermiNet with added convolutional
filters) is insufficiently expressive to model embeddings for many different molecules. Second, the
elements of the Slater matrix are essentially obtained as the inner product between an electron
embedding hi and an orbital embedding ckJ

Φik =

Nnuc∑

J=1

⟨hi, ckJ⟩φkiJ , (2.1)

with i, k enumerating electrons and orbitals respectively, J enumerating nuclei and φ representing
the envelope. When applying this ansatz to solids (see section 2.5) it has become apparent that
this approach cannot represent arbitrary mean-field wavefunctions and is therefore insufficiently
expressive. This can be overcome by using embeddings hiJ , which represent the interaction
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between an electron i and a nucleus J . This minimal change,

Φik =

Nnuc∑

J=1

⟨hiJ , ckJ⟩φkiJ , (2.2)

exchanging hi for hiJ allows expressing any mean-field wavefunction directly from localized
orbital features ckJ thus simplifying the architecture and increasing accuracy. While this has
only been tested for periodic systems so far, it seems likely that this change would also increase
the accuracy for molecules.

2.4 Variational Monte Carlo on a Budget — Fine-tuning
pre-trained Neural Wavefunctions

2.4.1 Paper summary
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Figure 2.4: Main result of [33], transfer of pretrained wavefunction to new, unseen
molecules. Accuracy of transferred wavefunctions (blue squares: section 2.3, orange circles:
section 2.4) when applied to new molecules as a function of the size of the new molecules (number of
non-hydrogen atoms). a)Energy error when the transferred wavefunction is not further optimized
for the new molecules. b) Energy error after additional 4000 optimization steps. Horizontal lines
correspond to Coupled Cluster results (CCSD(T)) in increasing basis sets (2ζ-4ζ).

This paper (see appendix D, [33]) improves on several of the shortcomings of the previous paper
(section 2.3). The key difference is that it replaces Hartree-Fock, which was used to generate
orbital features ck, by a separate neural network based on PhisNet [51]. This additional network
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is a graph neural network, which operates purely on the nuclear coordinates and is pretrained to
predict the overlap and Fock-matrix, key intermediate quantities in a mean field calculation. The
orbital features ck are obtained via diagonalization of the predicted Fock-matrix, avoiding the
self-consistent iterations required for a typical mean-field calculation. Avoiding the Hartree-Fock
calculation yields several benefits: For a given computational budget, more unique molecules and
geometries can be considered, since computing the orbital features is substantially accelerated.
This allows variational pretraining of the wavefunction on a much larger and more diverse dataset
of molecules, containing 100 distinct molecules with 700 distinct geometries. Additionally, the
pretraining dataset can be augmented by random rotations and distortions of the molecules.
The auxiliary graph neural network also generates features for each atom as a byproduct, which
can be used as inputs to the electron embedding network, further improving expressiveness and
generalization.

Using this improved embedding and pretraining on a larger, more diverse dataset yields a
transferable wavefunction model, which – when applied to new, unseen molecules – yields
surprisingly accurate energies. Figure 2.4 plots the accuracy of the pretrained wavefunction as
a function of the size of the molecules in the test set. Independent of the amount of additional
optimization steps, the new model obtained in [33] yields substantially more accurate energies
compared to previous work [13]. In particular in the zero-shot regime, i.e. without any subsequent
optimization of the wavefunction on the new molecule, the model yields energies that are more
accurate than CCSD(T) in a 3-ζ basis set. This even holds for molecules that are slightly larger
than the largest molecules present in the pretraining dataset.

2.4.2 Hindsight comments

This work still presents a strong baseline for a transferable neural network wavefunction for small
molecules, in particular in the zero-shot regime. Even if the model is eventually surpassed by
more accurate architectures, the dataset and data augmentation methodology used for variational
pretraining of the wavefunction appear to be useful contributions in their own right.

The main drawback of this work is the relatively high complexity of the model. In particular
the PhisNet based model, which predicts orbital coefficients ck, introduces substantial additional
complexity for two reasons: First, it requires separate pretraining on a mean-field dataset,
and this model must itself be able to generalize across molecules. Second the PhisNet model
explicitly preserves SE(3)-equivariance of the orbital coefficients under rotation or translation of
the molecule. While this is elegant and leads to very accurate results, it requires a more complex
architecture, adding further complexity. Ultimately it would be desirable to also update the
parameters of the orbital model during variational training, to enable end-to-end unsupervised
optimization of the wavefunction. While this was not done in this work to reduce complexity, it
is in principle straightforward and could lead to more accurate energies.

2.5 Transferable Neural Wavefunctions for Solids

2.5.1 Paper summary

This paper (see appendix E, [34]), which at the time of writing this thesis is currently under peer
review, applies the approach of transferable wavefunctions developed in the previous papers to
crystalline solids. neural network wavefunctions can in principle be extended straightforwardly
to model the wavefunction for crystalline systems, but solids pose some additional challenges.
Crystalline solids are composed of atoms arranged on a periodic lattice, which for practical
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Figure 2.5: Main result of [34], Potential Energy Surfaces of a lithium hydride crystal.
Cohesive energy of LiH as function of the lattice constant. Lines correspond to energies calculated
in a 2× 2× 2 supercell, crosses correspond to energies calculated in a 3× 3× 3 supercell. Energies
obtained from our work in the 3× 3× 3 supercell closely match the experimental cohesive energy
of the (gray horizontal band).

purposes extends almost infinitely in all directions. Simulating an ideal crystal therefore requires
in principle simulation of an infinitely extended system. This is in practice approximated by
computing the energy of a supercell, a simulation cell containing a finite number of repetitions of
the lattice unit cell. This truncation typically leads to large energy errors - known as finite size
errors - and considerable effort has been dedicated to minimizing these finite size errors.

First, instead of open boundary conditions, periodic or twisted boundary conditions [52] are
used. Here the translation of an electron by a supercell lattice vector Lsc must yield the same
wavefunction up to phase factor, specified by a parameter k

ψ(r1, . . . , ri +Lsc, . . . rnel
) = ei⟨k,L

sc⟩ψ(r1, . . . , ri, . . . rnel
). (2.3)

Averaging results for many different twists k yields an energy estimator which has smaller
finite size errors. Second, computations are typically done on increasingly large supercells
(and correspondingly decreasing finite size errors) to estimate and subtract these errors. Both
approaches require many similar calculations for distinct systems, varying the boundary conditions
specified by k, the system size specified by the supercell, and furthermore potentially varying the
geometry of the crystal.

This practical challenge has so far limited the applications of neural network wavefunctions
mostly to model systems [53, 54]. A notable exception is the work by Li et al. [55], which
applied a FermiNet-like architecture (dubbed DeepSolid) to real solids, but required up to 80,000
GPU-hours to compute energies for a single system. In our paper [34] we show that using
the transferable atomic orbitals developed for molecules, can be applied to solids. Because the
transferable wavefunction allows optimization of a single wavefunction for many different systems
at once (in particular across geometries, supercell sizes and boundary conditions k), our approach
can model solids at substantially lower cost. Figure 2.5 shows as an example the potential energy
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surface of lithium hydride. We find that our approach yields energies which improve on DeepSolid
by ≈ 10mHa and obtains excellent agreement with experiments. Most importantly though, we
obtain these more accurate results at approximately 50× lower computational cost.

2.5.2 Hindsight comments

Since this paper is very recent, there does not yet exist a proper hindsight view. One takeaway from
the project was that, beyond the domain knowledge required for studying molecules, modelling
of solids requires an even larger amount of specialized tools and tricks. In particular there are
several layers of corrections required to be able to compare against experiments: Twist averaging
to reduce finite size errors in the kinetic energy [52], structure factor based corrections to reduce
finite size errors in the potential energy [56], and zero point vibrational energies. While real
solids form an important and highly interesting class of systems, the inherently large supercells
required to study them substantially increase the difficulty of method development for these
systems.
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Abstract

Finding accurate solutions to the Schrödinger equation is the key unsolved chal-
lenge of computational chemistry. Given its importance for the development of new
chemical compounds, decades of research have been dedicated to this problem, but
due to the large dimensionality even the best available methods do not yet reach
the desired accuracy. Recently the combination of deep learning with Monte Carlo
methods has emerged as a promising way to obtain highly accurate energies and
moderate scaling of computational cost. In this paper we significantly contribute
towards this goal by introducing a novel deep-learning architecture that achieves
40-70% lower energy error at 6x lower computational cost compared to previous
approaches. Using our method we establish a new benchmark by calculating the
most accurate variational ground state energies ever published for a number of
different atoms and molecules. We systematically break down and measure our
improvements, focusing in particular on the effect of increasing physical prior
knowledge. We surprisingly find that increasing the prior knowledge given to the
architecture can actually decrease accuracy.

1 Introduction

The challenge of the Schrödinger Equation Accurately predicting properties of molecules and
materials is of utmost importance for many applications, including the development of new materials
or pharmaceuticals. In principle, any property of any molecule can be calculated from its wave-
function, which is obtained by solving the Schrödinger equation. In practice, computing accurate
wavefunctions and corresponding energies is computationally extremely difficult for two reasons:
First, the wavefunction is a high-dimensional function, depending on all coordinates of all electrons,
subjecting most methods to the curse of dimensionality. Second, the required level of accuracy is
extremely high. While total energies of small molecules are typically hundreds of Hartrees, the
chemically relevant energy differences are on the order of 1 milli-Hartree as depicted in Fig. 1.
Decades of research have produced a plethora of methods, which all require a trade-off between
accuracy and computational cost: On one end of the spectrum are approximate methods such as
Hartree-Fock (HF) or Density Functional Theory (DFT), which was awarded the Nobel prize in
1998. These methods can treat thousands of particles but can often only crudely approximate chem-
ical properties. On the other end of the spectrum are "gold-standard" methods such as FCI (Full
Configuration Interaction) or CCSD(T) (Coupled Clusters Singles Doubles (Perturbative Triples))
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which yield energies that often closely agree with experiments, but can only treat up to 100 particles.
Despite all these efforts, even for small molecules there do currently not exist highly accurate energy
calculations. A 2020 benchmark of state-of-the-art methods for the benzene molecule found a spread
of 4 mHa across different methods [1] – as a matter of fact, our results show that the absolute energies
calculated in [1] are off by at least 600 mHa, due to the small basis set used in their calculations.
An important characteristic of a method is the type of approximation being made: Hartree-Fock or

Total energy
109.505 Ha
100%

Correlation energy
511 mHa, 0.5 %

Required accuracy
1- 2 mHa
0.002 %

Figure 1: Conceptual visualization of the required accuracies on the example of an N2 molecule: For
chemical applications, total energies must achieve accuracies of ∼99.998%.

FCI are "variational", meaning that their predicted energies at least upper-bound the ground-truth
energy. Since a lower energy is always guaranteed to be a closer approximation of the true energy,
this makes assessment of these methods straight-forward. In contrast, CCSD(T) or DFT do not have
any guarantees on the accuracy of their results. The approximations resulting from such methods,
while working well for many common systems, often fail for chemically challenging situations such
as breaking of chemical bonds [2, 3].

Deep-learning-based variational Monte Carlo Combining deep learning and Monte Carlo meth-
ods has recently emerged as a promising new approach for solving the Schrödinger equation [4, 5].
These methods offer high accuracy, moderate scaling of computational cost with system size and
obey the variational principle. Within a few years deep-learning-based methods have managed to
outperform conventional high-accuracy methods for many different molecules, potentially defining a
new gold-standard for high-accuracy solutions. In the Born-Oppenheimer approximation a molecule,
consisting of nnuc nuclei and nel electrons, is fully described by its Hamiltonian in atomic units

H = −1

2

∑

i

∇2
ri

+
∑

i>j

1

|ri − rj |
+
∑

I>J

ZIZJ
|RI −RJ |

−
∑

i,I

ZI
|ri −RI |

.

Here RI , ZI , I ∈ {1, . . . , nnuc} denote the coordinates and charges of the nuclei, r =
(r1, . . . , rn↑ , . . . , rnel) ∈ R3×nel denotes the set of nel Cartesian electron coordinates differentiated
between n↑ spin-up and n↓ spin-down electrons. We define the inter-particle vectors rij = ri − rj
and ρiJ = ri −RJ . All properties of the molecule depend on the wavefunction ψ(r), which must
fulfill the antisymmetry constraint: ψ(Pr) = −ψ(r) for any permutation P of two electrons with
the same spin [6]. The wavefunction ψ can be found as the solution to the Schrödinger equation
Hψ = E0ψ with the ground-state energy and smallest eigenvalue E0. By the Rayleigh-Ritz principle
[7], the ground-state energy and the corresponding wavefunction can be found through minimization
of the loss

L(ψθ) = Er∼ψ2
θ(r)

[
Hψθ(r)

ψθ(r)

]
≥ E0 (1)

for a trial wavefunction ψθ, parameterized by parameters θ. The trial function ψθ is represented by a
neural network and typically has the form

ψθ(r) =

ndet∑

d=1

det
[
Λdki(r)Ω

dαi

k (ri)
]
k,i=1,...,nel

(2)

with Λdki : R3×nel → R, Ωdk : R3 → R, αi ∈ {↑, ↓}, i ∈ {1, . . . , nel}, k ∈ {1, . . . , nel}. Each
determinant is taken over a nel × nel matrix, with row-indices k running over orbitals and column-
indices i running over electrons. The determinant enforces antisymmetry, Ωdk are envelope functions
enforcing the boundary condition lim|r|→∞ ψθ(r) = 0, and Λdki are neural networks. The local
energy Hψ

ψ can be evaluated using automatic differentiation and the loss can be minimized by gradient
based methods. The computation of the expectation value in eq. 1 over the high-dimensional space
R3×nel is done using Monte Carlo integration by sampling electron coordinates r distributed according
to ψ2

θ using the Metropolis-Hastings [8] algorithm. A thorough discussion of deep-learning-based
variational Monte Carlo (DL-VMC) can be found in [9].
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Related work Two major neural network architectures and their extensions have emerged through-
out literature: PauliNet [9] and FermiNet [10]. PauliNet puts emphasis on maximizing physical prior
knowledge, by focusing on the the envelope function. They use the output of CASSCF (Complete
Active Space Self Consistent Field, a sophisticated conventional quantum-chemistry method) as Ω
and use a relatively small (∼ 100k weights) neural network for Λ. FermiNet on the other hand uses a
simple exponential function as envelope Ω and uses a large (∼ 700k weights) neural network for Λ.
Both approaches have been applied with great success to many different systems and properties, such
as energies of individual molecules [4, 10, 9], ionization energies [10], potential energy surfaces [11,
12], forces [11], excited states [13], model-systems for solids [14, 15] and actual solids [16]. Several
approaches have been proposed to increase accuracy or decrease computational cost, most notably
architecture simplifications [17], alternative antisymmetric layers [18], effective core potentials [19]
and Diffusion Monte Carlo (DMC) [20, 21]. FermiNet commonly reaches lower (i.e. more accurate)
energies than PauliNet[10], but PauliNet has been observed to converge faster [12]. It has been
proposed [9] that combining the embedding of FermiNet and the physical prior knowledge of PauliNet
could lead to a superior architecture.

Our contribution In this work we present the counter-intuitive observation that the opposite
approach might be more fruitful. By combining a PauliNet-like neural network embedding with
the envelopes of FermiNet and adding several improvements to the embedding, input features, and
initialization of parameter (Sec. 2), we obtain the currently best neural network architecture for
the numerical solution of the electronic Schrödinger equation. Combining our new architecture
with VMC we establish a new benchmark by calculating the most accurate variational ground state
energies ever published for a number of different atoms and molecules - both when comparing to
deep-learning-based methods, as well as when comparing to classical methods (Sec. 3). Across
systems we reduce energy errors by 40-100% and achieve these results with 3-4x fewer optimization
epochs compared to FermiNet. In Sec. 4 we systematically break down which changes cause these
improvements. We hypothesize that including too much physical prior knowledge can actually hinder
optimization and thus deteriorate accuracy – we provide ample experimental evidence in Sec. 5.

2 Improved approach

Similar to FermiNet, our architecture expresses Λdki as a linear combination of high-dimensional
electron embeddings hLi , and the envelopes Ωdαi

k as a sum of exponential functions

Λdki(r) =W dαi

k hLi Ωdαi

k (ri) =

nnuc∑

I=1

πdαi

kI exp(−ωdαi

kI |ρiI |), (3)

where W dαi

k , πdαi

kI , ω
dαi

kI are trainable parameters and we enforce ωdαi

kI ≥ 0. We compute these
embeddings hLi by first transforming the inputs RI , ri into feature vectors

h0
i =

[
|ρiI |, ρ̃iI

]

I∈{1,...,nnuc}
v0
iI =

[
|ρiI |, ρ̃iI

]
g0
ij = |rij |

where [·] denotes the concatenation operation and then applying L iterations of an embedding network
(Fig. 2a). The local difference vectors ρ̃iI are obtained by applying rotation matrices onto ρiI as
described in Sec. 2.2.

2.1 Convolutional layers in embedding

Our embedding network uses four residual neural network streams (Fig. 2b): A primary one-
electron stream that embeds a single electron, and three auxiliary streams modelling the two-particle-
interactions (electrons with same spins, electrons with different spin, and electron-ion).

hl+1
i = Al

one

(
f li
)
+ hli gl+1

ij = Al
σij

(
glij
)
+ glij vl+1

iI = Al
nuc

(
vliI
)
+ vliI (4)

Here l denotes the embedding iteration, Al denote fully connected neural networks, and glij , v
l
iI

denote electron-electron- and electron-nucleus-embeddings. We use σij = ’same’ for same-spin
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Feed-forward
networks
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Features
Changes relative
to FermiNet

a.) b.) c.)

Mean over
electrons

SchNet-like
convolution

Figure 2: Our architecture: a) High-level overview b) One single embedding iteration c) Sub-block
of assembling symmetric features

pairs of electrons and σij = ’diff’ for pairs of electrons with different spin. Similar to FermiNet, in
each iteration we assemble the input f li to the primary stream from the auxiliary streams (Fig. 2c):

f li =

[
hli,

1

n↑

n↑∑

j=1

hlj ,
1

n↓

nel∑

j=1+n↑

hlj , sl,el
i , sl,nuc

i

]
. (5)

Inspired by the success of SchNet [22] and the efficiency of the PauliNet embedding, we use the
sum of element-wise multiplication (⊙), effectively forming a convolution, to aggregate the auxiliary
two-particle streams:

sl,el
i =

nel∑

j=1

Bl
σij

(
glij
)
⊙Cl

σij

(
hlj
)

sl,nuc
i =

nion∑

I=1

Bl
nuc

(
vliI
)
⊙Cl

nuc

(
Zemb
I

)
(6)

Eq. 5 and 6 form the core of the architecture and are the key difference between FermiNet, PauliNet
and our architecture. The PauliNet architecture emphasizes two-particle interactions and essentially
only uses convolutions as input features: f li = [sl,el

i , sl,nuc
i ]. In addition to not using the hi as input

features, PauliNet also limits its effective depth by making the convolutional kernels B functions
of the electron-electron distances |rij | instead of the high-dimensional embedded representations
gij . The FermiNet architecture on the other hand emphasizes the one-electron stream and only uses
sums over gij as input features, essentially corresponding to Bl = Id, C(·) = 1. Furthermore
FermiNet does not contain an explicit stream for electron-nucleus interactions. Since our architecture
adequately models both the one-electron-embedding as well as the two-particle-interactions, we
expect our architecture to be more expressive than either predecessor, as demonstrated in Sec. 4.

2.2 Local, invariant input features

The first stage of any VMC wavefunction model is typically the computation of suitable input features
from the raw electron coordinates r and nuclear coordinates {RI}. While the subsequent embedding
stage could in principle take the raw coordinates, appropriate features allow to explicitly enforce
symmetries and improve the model’s transferability and accuracy. Input features should have three
properties: First, they should be sufficiently expressive to encode any physical wavefunction. Second,
the features should be invariant under geometric transformations. Third, the features should primarily
depend on the local environment of a particle, i.e. similar local geometries should generate similar
local features, mostly independent of changes to the geometry far from the particle in question.
Published architectures have so far not been able to address all three points: PauliNet [10] uses
only distances as input features, making them invariant and local, but not sufficiently expressive, as
demonstrated by [12]. FermiNet [10] uses raw distances and differences, making the inputs expressive
and local, but not invariant under rotations. PESNet [12] proposes a global coordinate system along
the principle axes of a molecule, making the inputs invariant and sufficiently expressive, but not local.

We propose using local coordinate systems centered on every nucleus and evaluating the electron-
nuclei differences in these local coordinate systems. Effectively this amounts to applying a rotation
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a.) Ethene b.) Hypothetical chain of atoms Global
coordinates 
(PESNet)

Local
coordinates 
(this work)

Figure 3: Visualization of resulting coordinate systems for 2 example molecules: a) Ethene b) A
hypothetical bent chain of atoms.

matrix UJ to the raw electron-nucleus differences: ρ̃iJ = UJρiJ . As opposed to [12] where U
is constant for all nuclei, in our approach UJ can be different for every nucleus. These electron-
nucleus differences ρ̃iJ are invariant under rotations, contain all the information contained in raw
Cartesian coordinates and depend primarily on the local environment of an atom. To compute the
3x3 rotation matrices UJ , we first run a single Hartree-Fock calculation using a minimal basis set to
obtain a density matrix D. For each atom J we choose the 3x3 block of the density matrix which
corresponds to the 3 p-orbitals of the atom J and compute its eigenvectors UJ = eig(DJ). To make
our coordinate system unique we sort the eigenvectors of DJ by their corresponding eigenvalues. If
the eigenvalues are degenerate, we pick the rotation of the eigenvectors that maximizes the overlap
with the coordinate-axes of the previous nucleus. Fig. 3 shows the resulting coordinate systems
spanned by UJ . Note that the local coordinate system generally depicts more physically meaningful
directions such as "along the chain". We find that these local coordinates slightly increase the accuracy
for single geometries, but more importantly we expect the wavefunction to generalize better across
different molecules or geometries. This should improve the accuracy of approaches that attempt to
learn wavefunctions for multiple geometries at once [11, 12].

2.3 Initialization of orbital envelope weights

When considering a single atom, the entries of the wavefunction determinant have essentially the
form

Λki(r) exp (−ωk|ρiI |) .

In [10], the exponential envelope was purely motivated by the boundary condition that the orbitals
must decay to zero, and initialization with ωk = 1 was proposed. However, when comparing
this ansatz to analytical solutions, an interesting parallel can be found: Analytical solutions to the
Schrödinger equation for atoms with a single electron – the only systems that have analytical solutions
– are of the form

Λ̃k(ρiI) exp

(
− Z

nk
|ρiI |

)
,

where Λ̃k(ρiI) is a product of a Laguerre polynomial and a spherical harmonic, and nk ∈ N+

is known as the principal quantum number. This suggests ωk ≈ Z/nk, which we also find when
analyzing the weights of a fully trained wavefunction. When initializing with ωk = Z/nk instead of
ωk = 1, we observe faster convergence, lower final energies, and lower variance of the energies (Sec.
4). The effect is most notable for molecules containing nuclei with large Z, where Z/nk ≫ 1.

2.4 Improved hyperparameters

Beyond the improved neural network architecture we fine-tuned the hyperparameters to reduce the
number of optimization steps required for convergence. Starting from the hyperparameters proposed
by [10], we increased the norm constrain by 3x for the second-order optimizer KFAC [23, 24],
decreased learning rate by 0.5x, and decreased learning rate decay time by 0.4x. We observe that
these changes stabilize the optimization and enable usage of 50% fewer Monte Carlo walkers, which
results in∼2x faster optimization and reduced memory allocation. A complete set of hyperparameters
can be found in appendix B.
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3 Results of improved approach

We evaluated the accuracy of our approach by comparing our computed energies against the most
accurate references available in the literature. Fig. 4 compares our energies against variational
methods – for which lower energies are guaranteed to be more accurate – as well as non-variational
high-accuracy methods. We find that across many different systems (small and large atoms, molecules
at equilibrium geometry, molecules in transition states), our approach yields substantially lower –
and thus more accurate – energies than previous variational results. Across all tested systems, we
outperform almost all existing variational methods, both deep-learning-based methods as well as
classical ones. When comparing to high-accuracy FermiNet VMC calculations, we not only reach
substantially lower energies, but also do so using 3-4x fewer training steps, with each step being 40%
faster (cf. appendix C). Comparing to a concurrently published Diffusion Monte Carlo approach,
which used ∼10x more computational resources, we achieve similar or better accuracy for molecules
like N2 and cyclobutadiene and slightly lower accuracy for benzene. Non-variational methods (e.g.
CCSD(T)) yield slightly lower energies than our calculations for some molecules, but since those
methods do not provide upper bounds or uncertainty guarantees they do not provide a ground-truth.
For many applications not only absolute energies are important, but energy differences between
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Figure 4: Energies relative to the previously known best estimate, (lower is better). Blue bars depict
best published variational energies, footnotes mark the method: a: FermiNet VMC [10, 17], b:
Conventional DMC [25, 26, 27], c: FermiNet DMC [21], d: MRCI-F12. A table of absolute energies
and methods for Eref can be found in appendix A. Note that Eref is not necessary variational and thus
may underestimate the true energy.

different molecules or geometries are of interest, for example to determine the energy required to
break a chemical bond. A particularly difficult challenge is the dissociation of the N2 molecule, i.e.
the energy of an N2 molecule at different bond lengths (inset Fig. 5). Even methods that are generally
regarded as highly accurate, such as CCSD(T), predict energies that deviate far from experimental
data at bond-lengths from 2.5 - 4 bohr. Fig. 5 depicts this deviation between experimental and
computed energy for our method and the best available reference calculations. We find that our
results are closer to the experimental absolute energies than all previous work, and are similar to
concurrently published FermiNet-DMC results which require 5-10x more computational resources.
When comparing relative energies, our approach outperforms all other deep-learning-based methods
and CCSD(T), and is only beaten by the highly specialized r12-MR-ACPF method [28]. Similar to
absolute energies, we also find that our relative energies converge substantially faster than for other
deep-learning-based methods, with relative energies being almost fully converged after 50k epochs.
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Figure 5: Comparison of energy error E - Eexperiment for the dissociation of the N2 molecule across
various methods. Errorbars corresponds to the standard deviation wrt. two different seeds. Errorbars
for our work are too small to be visible (∼ 0.1 mHa). Results for Eexperiment can be found in [29],
FermiNet block-det & CCSD(T) in [10], FermiNet DMC in [21] and r12-MR-ACPF in [28].

4 Ablation study

To investigate which specific changes lead to the observed improvements in accuracy, we start from
the improved FermiNet architecture proposed in [17] and incrementally add improvements in the
following order: First, we use dense nel × nel determinants introduced by the FermiNet authors [10,
17] in their GitHub repository and described in [18] instead of block-diagonal determinants. This
generalization increases computational cost and parameter count (cf. appendix C) but has been found
to better describe the wavefunction’s nodal surface and thus increase expressiveness of the ansatz.
Second, we change hyperparameters as described in Sec. 2.4, which increases throughput by ∼ 2x.
Third, we augment the electron embedding using our new SchNet-like neural network architecture
described in Sec. 2.1. This leads to a moderate increase in parameter count and computational cost.
Fourth, we switch to local, invariant input features as described in Sec. 2.2 and remove the electron-
electron difference vectors rij as inputs. Lastly we switch to initializing ωdkI = Z/nk as described in
Sec. 2.3, resulting in our proposed final method. We note that the accuracy gains of these changes are
not fully independent of each other and the relative attribution depends on the order in which they
are applied: Earlier changes will generally generate larger energy improvements compared to later
changes. At each step we compute total energies for three different molecules: ethene, N2 at the
challenging bond-length of 4.0 bohr, and the K-atom. Fig. 6 depicts the energy of our implementation
of FermiNet, and the energy change caused by each subsequent improvement. Each experiment
was repeated two times with different RNG seeds (appendix D), the errorbars depict the spread in
energy. Overall we find that all our changes combined yield a ∼3-20x improvement in the energy
error. For ethene, the dominant contribution (3.7 mHa) comes from improved hyperparameters,
which lead to the results being mostly converged after 50k epochs vs. the original settings which
require 200k epochs for convergence. Using a lower learning rate in combination with a larger
gradient-norm-constraint ensures that more optimization steps are taken according to curvature
estimated by KFAC and fewer steps are clipped by the gradient-norm-constraint. Architectural
improvements (embedding and input features) lower the energy error by additional 1.4 mHa. Because
our embedding is a strict generalization of both FermiNet and PauliNet, our ansatz is more expressive
and can therefore reach lower energies than previous ansätze. For N2 it has already been observed
that a single dense determinant can outperform models with multiple block-diagonal determinants
[18]. We find the corresponding result that 32 dense determinants substantially lower the energy
relative to an ansatz with 32 block-diagonal determinants. Comparing N2 to ethene, we observe
larger contributions from our architectural improvements and smaller contributions from improved
hyperparameters. For the K atom, the overall gains are largest, totalling 60mHa, with substantial
accuracy gains from all improvements. Since K has a much larger nuclear charge (Z=19) than the
constituents of ethene (Z=1,6) and N2 (Z=7), also the physics-inspired initialization of the envelope
parameters yields a substantial contribution. This improved initialization leads to a better initial guess
for the wavefunction, which not only reduces the number of required optimization steps, but also
leads to more accurate initial sampling.
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Figure 6: Breakdown of accuracy improvements for three different molecules, each trained for 50k
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VMC calculations after 100k epochs for the K atom.

5 Incorporating prior knowledge

To further understand the effect of incorporating prior knowledge into neural network architectures
for physical problems as the electronic Schrödinger equation, we examined two distinct ways of
increasing prior information in our model: First, by including a built-in approximate physical model,
analogous to PauliNet. Second, by increasing the number of pre-training steps to more closely match
a reference wavefunction before starting the optimization.

Explicitly include CASSCF PauliNet maximizes the physical prior information by computing the
envelopes Ω with CASSCF, a sophisticated conventional method, and explicitly enforcing the Kato
cusp conditions [30]. Starting from our proposed architecture, we modified our approach step-by-step
until we arrived at a PauliNet-like architecture. Fig. 7a shows the energies of an NH3 molecule
trained for 50k epochs at each step.
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First, we switch from dense determinants to block-diagonal determinants as used by the original
PauliNet, leading to small loss in accuracy. Second, we exchange our embedding for the PauliNet-like
embedding using the hyperparameters proposed in [11], leading to a substantial loss in accuracy,
presumably caused by a loss in expressiveness. Next, we replace the simple exponential envelopes by
the more physically inspired CASSCF-envelopes, causing a large loss in accuracy. We then remove
the vector ri −RI as input feature (keeping only its absolute value) as done in the original PauliNet
architecture [9]. This again deteriorates accuracy, presumably due to enforcing rotational invariance
which is too restrictive of a symmetry class as pointed out by [12]. Lastly we replace the electron-
electron distances |rij | (which are not smooth at rij = 0 and thus lead to cusps) by smooth, cuspless
radial basis functions as input feature and add an explicit term to enforce the electron-electron cusp
condition. Since the CASSCF-envelopes are designed to fulfill the electron-ion cusp condition, this
change leads to an enforced cusp condition, slightly improving the energy accuracy. The largest loss
in accuracy throughout these changes is caused by introducing the CASSCF-envelopes, suggesting
that they introduce a strong bias of the wavefunction that cannot be easily overcome during training.
Fig. 7b shows that architectures using exponential envelopes converge to lower absolute energies
compared to the CASSCF-based PauliNet and outperform PauliNet already after ∼5000 epochs.

Increase pre-training accuracy Before starting the unsupervised variational optimization of the
wavefunction, we run a short supervised pre-training of the wavefunction to roughly match a given
reference wavefunction. This is computationally inexpensive because it only requires evaluation of
ψθ and a back-propagation step to update the neural network weights θ but not the second derivative
of the Hamiltonian. If the reference method yields a decent approximation to the true wavefunction,
this pre-training significantly speeds-up optimization and avoids unstable parameter regimes [10].
To incorporate more prior knowledge, one could either use a more sophisticated reference method
(e.g. CASSCF instead of HF) or increase the number of pre-training steps. In Fig. 7c we pre-trained
the wavefunction with a block diagonal determinant for the NH3 molecule using a CASSCF and
Hartree-Fock reference. We increased pre-training iteration steps and evaluated the energy after
subsequent 20k and 50k variational optimization epochs, each run was repeated with five different
seeds. Increasing the number of pre-training steps initially increases accuracy – since it provides a
better starting point for the subsequent variational optimization – but when increasing pre-training
beyond 20k steps, accuracy deteriorates for both methods. Surprisingly, we observe a drop in accuracy
when using CASSCF as a reference method compared to the simpler Hartree-Fock method. This
effect is even more pronounced when increasing the number of pre-training steps. It suggests that
excessive pre-training introduces a bias that is hard to overcome during variational optimization,
similarly to a built-in reference method.

6 Discussion and Limitations

Discussion We find that our approach yields substantially more accurate absolute energies than all
previous work – both classical as well as deep-learning-based – and that we reach these accuracies
4-6x faster than the next best method (FermiNet). Especially for larger systems, such as 4th row atoms
or the amino acid glycine, we outperform conventional "gold-standard" methods like MRCI-F12(Q)
by ∼100 mHa. This corroborates the fact that deep-learning-based methods are emerging as a
new gold-standard in computational chemistry and showcases the immense potential of machine-
learning-based methods in the natural sciences. A concurrent work [21] was able to achieve similar
accuracies by applying Diffusion Monte Carlo (DMC) on top of a FermiNet VMC calculation,
highlighting the potential of deep-learning Monte Carlo methods. However, [21] required ∼10x more
computational resources and their VMC results – already by themselves 8x more expensive then
our calculations – are consistently inferior to our results. This showcases a promising route towards
further improvements by using our substantially cheaper and more accurate VMC results as a starting
point for a DMC calculation.

Regarding the question of how much physics to include in the model, we find varying results. For
exact physical constraints, such as symmetries or the cusp conditions, inclusion in the model generally
appears to be helpful. However for prior knowledge from existing approximate solutions (such as
CASSCF) the situation is more subtle. On the one hand, soft physical guidance such as short
supervised pre-training or physics-inspired weight initialization accelerates optimization. On the
other hand, we show empirically that increasing physical prior knowledge, e.g. by incorporating

9



CASSCF or extensive supervised pre-training, does not necessarily increase accuracy, but can in fact
introduce detrimental biases that are hard to overcome during wavefunction optimization.

Limitations and outlook Despite the proposed improvements and favorable scaling of the method,
computation of energies for large molecules still takes days of GPU-time on current hardware.
While the same holds true for conventional high-accuracy approaches, substantial speed-ups are
still required to make DL-VMC more accessible for practitioners. Additionally, when increasing
the nuclear charges, the wavefunction becomes increasingly localised, which leads to a reduction
in average Monte Carlo stepsize and potentially correlated samples. We circumvent this effect for
4th row atoms by increasing the number of intermediate Monte Carlo steps, but further research
into Monte Carlo sampling methods [31, 32] is required to fully address this issue. Despite our
improvements for the accuracy of energy differences between different molecules or geometries, DL-
VMC is still outperformed by other, computationally cheaper methods in some cases. Initial research
into the regularity of the wavefunction across different molecules [11, 12] provides a promising
route to improvements. We note in passing that thanks to the local coordinate input features, our
architecture fulfills the required rotational invariance required for these approaches.

7 Code availability

The code alongside a detailed documentation is available as part of the DeepErwin code package
on the Python Package Index (PyPI) and github (https://github.com/mdsunivie/deeperwin)
under the MIT license.
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Using a deep neural network-based ansatz for variational 
Monte Carlo (VMC) has recently emerged as a novel 
approach for highly accurate ab initio solutions to the multi-

electron Schrödinger equation1–5. It has been observed that such 
methods can exceed the accuracy of gold-standard quantum-chem-
istry methods such as coupled clusters with single-, double- and 
perturbative triplet-excitations (CCSD(T))6, with the computational 
cost per step scaling only with complexity O(N4) for the number of 
electrons N (ref. 4). This suggests a drastic improvement from clas-
sical quantum-chemistry methods such as CCSD(T) or configura-
tion interaction singles, doubles, triples, quadruples (CISDTQ), 
which scale with O(N7) and O(N10), respectively. However, due to 
the large number of free parameters and the need for Monte Carlo 
integration, the constant runtime prefactor for neural network-
based methods is typically much larger than for classical approaches 
such that even systems of modest size still require days or weeks 
for computation when using highly optimized implementations on 
state-of-the-art hardware7. This often renders deep neural network 
(DNN)-based ansatz methods unfeasible in practice, in particular 
when highly accurate results for a large number of molecular geom-
etries are required.

Among such tasks are computational structure search, determi-
nation of chemical transition states and the generation of training 
datasets for supervised machine learning algorithms in quantum 
chemistry. The last two methods are applied with great success 
to interpolate results of established quantum-chemistry methods 
such as energies and forces8–10, properties of excited states11, under-
lying objects such as orbital energies12 or the exchange energy13. 
Given sufficient training data, these interpolations already achieve 
chemical accuracy relative to the training method (for example, 
density functional theory)14, highlighting the need for increasingly 

accurate ab initio methods that can be used to generate reference 
training data.

The goal of making DNN-based VMC applicable for the genera-
tion of such high-quality datasets for previously untractable mol-
ecules is a key motivation for this work. The apparent success of 
supervised learning in quantum chemistry suggests a high degree of 
regularity of the aforementioned properties and the wavefunction 
itself within the space of molecular geometries.

Here we already aim to exploit potential regularities of the wave-
function within the space of molecular geometries during VMC 
optimization by applying a simple technique called weight-sharing. 
Throughout optimizing instances of the same neural network-based 
wavefunction model for different molecular geometries, we enforce 
that each instance has the exact same neural network weights for 
large parts of the model. In particular, this means that on the parts 
of the model in which weight-sharing is applied, each instance com-
putes precisely the same function. We note that this idea is remi-
niscent of (and inspired by) the machine learning technique deep 
transfer learning, where parts of a pretrained model are reused for 
different similar tasks to breakthrough results, for example, in natu-
ral language processing15 or computer vision16.

Weight-sharing can be viewed as a regularization technique that 
requires large parts of the optimized model to work equally well 
for a potentially wide variety of different nuclear (or even molecu-
lar) geometries. Under the assumption that the wavefunctions are 
sufficiently uniform across geometries, weight-sharing should 
therefore have a stabilizing effect on the optimization process and 
yield wavefunctions that also generalize well to new molecular 
geometries when used as an initial guess before optimization. For 
a shared weight, each gradient descent update during optimization 
for a specific geometry is applied to the complete set of considered 

Solving the electronic Schrödinger equation for 
multiple nuclear geometries with weight-sharing 
deep neural networks
Michael Scherbela   1,5, Rafael Reisenhofer   1,2,5 ✉, Leon Gerard   1,5, Philipp Marquetand   1,3  
and Philipp Grohs1,2,4

The Schrödinger equation describes the quantum-mechanical behaviour of particles, making it the most fundamental equa-
tion in chemistry. A solution for a given molecule allows computation of any of its properties. Finding accurate solutions for 
many different molecules and geometries is thus crucial to the discovery of new materials such as drugs or catalysts. Despite 
its importance, the Schrödinger equation is notoriously difficult to solve even for single molecules, as established methods 
scale exponentially with the number of particles. Combining Monte Carlo techniques with unsupervised optimization of neural 
networks was recently discovered as a promising approach to overcome this curse of dimensionality, but the corresponding 
methods do not exploit synergies that arise when considering multiple geometries. Here we show that sharing the vast majority 
of weights across neural network models for different geometries substantially accelerates optimization. Furthermore, weight-
sharing yields pretrained models that require only a small number of additional optimization steps to obtain high-accuracy 
solutions for new geometries.
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geometries. Weight-sharing therefore has the potential to substan-
tially accelerate the optimization process.

Our main numerical results highlight the benefits of weight-shar-
ing compared with independent optimization and the applicability 
of pretrained shared weights for new calculations. In particular, we 
show that by applying these techniques in combination with second-
order optimization, it is possible to consistently reach the energies 
of multi-reference configuration interaction (MRCI)-F12 reference 
calculations—up to chemical accuracy—for molecules up to the size 
of ethene after only O(102) optimization epochs per geometry. Note 
that wavefunctions are typically being optimized from O(104) to 
O(105) epochs for the most recently proposed DNN-based VMC 
methods. To further demonstrate the applicability of the proposed 
framework in practice, we calculate the transition path for H+

4  
between two symmetry-equivalent minima, wavefunctions for a set 
of differently twisted and stretched ethene configurations, as well as 
the potential energy surface (PES)—including forces—of a H10 chain 

on a two-dimensional grid of nuclear coordinates. Our approach 
yields these forces in addition to energies at a low incremental cost, 
as opposed to other high-accuracy methods such as domain-based 
local-pair natural-orbital-coupled cluster17, for which forces typi-
cally have a substantial incremental computational cost.

Results
To investigate weight-sharing for neural network-based models in 
VMC, we consider a framework called DeepErwin, in which the 
trial wavefunction is modelled similarly to the recently proposed 
PauliNet2, with modifications leading to an overall smaller network 
that yields higher accuracies. The basic idea behind this model is 
to enhance a Slater determinant ansatz with deep neural networks, 
where initial orbitals are obtained from a complete active space 
self-consistent field (CASSCF) calculation with a small basis set 
and a small active space. The resulting wavefunction is then modi-
fied by applying a backflow transformation to the orbitals as well 
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Fig. 1 | overview of the Deeperwin framework. a, Overview of the neural network parts of the wavefunction model implemented in the DeepErwin 
framework, including a top-level visualization of the two weight-sharing set-ups considered in our experiments. b, Overview of the wavefunction 
model implemented in DeepErwin. Spin dependence has been omitted for clarity, but in practice there are two parallel streams for spin-up and -down, 
respectively. nel, number of electrons; nnuc, number of nuclei; npar, number of particles (electrons + nuclei); ndet, number of determinants; nemb, embedding 
dimension; nbf, backflow feature dimension. c, Energy of optimized wavefunctions for several small atoms and molecules relative to reference calculations4 
for DeepErwin with first-order optimizer Adam21, second-order optimizer K-FAC, and PauliNet2. DeepErwin baseline solutions without weight-sharing 
achieve a higher accuracy than PauliNet across the tested systems despite a smaller number of parameters.
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as to the electron coordinates and via an additional Jastrow factor. 
All of these enhancements depend on an embedding of the elec-
tron coordinates into a high-dimensional feature space that takes 
into account interactions with all other particles. This embedding 
is based on Electronic SchNet18 and PauliNet. Cusp correction is 
performed explicitly19. By contrast to PauliNet, we use an additional 
equivariant backflow shift for the electron coordinates, smaller 
embedding networks and no residual in the embedding layers. 
For a realization of the wavefunction model implemented in the 
DeepErwin framework, the energy can be approximated through 
Monte Carlo integration. To eventually obtain the wavefunction of 
the ground state for a specific molecule, this energy is minimized  
by applying gradient descent steps to the free parameters of the 

wavefunction model. A detailed description of our architecture and 
the optimization procedure can be found in the Methods.

A top-level overview of the neural network parts of DeepErwin 
and a detailed visualization of the corresponding wavefunction 
model are shown in Fig. 1a,b. In comparison with PauliNet, we find 
that, without using weight-sharing constraints, we achieve a higher 
accuracy with fewer trainable weights for the small systems tested 
in ref. 2 when training for the same number of epochs (Fig. 1c). This 
indicates that the architecture implemented in DeepErwin provides 
a meaningful baseline to investigate the effects of weight-sharing on 
the optimization process. Application of weight-sharing is of course 
not limited to this specific model but could equally well be adapted 
for any neural network-based wavefunction model.
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Fig. 2 | Results using weight-sharing during optimization for four different sets of molecules. Each subplot depicts the energy deviation between 
DeepErwin and a high-accuracy MRCI reference calculation as a function of training epochs. The three coloured lines correspond to three distinct 
experiments: no weight-sharing (blue), sharing 75% of weights (orange) and sharing 95% of weights (red). Boxplots show the 25–75th percentile of 
energy deviations, connecting lines show mean energy deviations, whiskers span the non-outlier range (1.5 interquartile ranges above and below the 
boxes), energy deviations beyond the whiskers are plotted individually. Dashed horizontal lines (gray) correspond to an error of 1 kcal mol−1 (1.6 mHa), 
commonly referred to as ‘chemical accuracy’. a, Weight-sharing for 112 H4

+ geometries. b, Weight-sharing for 49 H6 geometries. c, Weight-sharing for  
49 H10 geometries. Note that the reference energies here differ slightly from the reference energy in Fig. 1c, which was not available for the complete set  
of 49 geometries. d, Weight-sharing for 30 ethene geometries.
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All subsequently reported results were obtained via second-
order optimization using a Kronecker-factored approximate cur-
vature (K-FAC)20, which was already implemented for FermiNet4. 
To show that our findings are consistent across different types 
of optimization, we also report results regarding the acceler-
ated optimization through weight-sharing and the applicability of 
weight-sharing for pretraining when using the well known Adam 
algorithm21 (Supplementary Figs. 1 and 2).

Accelerated optimization through weight-sharing. The imple-
mented architecture and the hyperparameters used in our experi-
ments are designed to allow for a maximum number of free 
parameters to be potentially shared across geometries. Two parts of 
the model that should be particularly well suited for weight-sharing 

are the electron coordinate embedding and the generalized part of 
the backflow factor. Both basically serve as feature extractors that 
compute high-dimensional embeddings of electron coordinates and 
are therefore not necessarily required to perform geometry-specific 
computations. The orbital-specific part of the backflow factor, on 
the other hand, has a one-to-one correspondence to the orbitals 
yielded by CASSCF for a given geometry, suggesting that the neural 
network weights defining it cannot be shared across geometries in 
a meaningful way.

When weight-sharing is restricted to the embedding and the 
generalized part of the backflow factor, usually about 75% of the 
weights in the model are covered by weight-sharing constraints. In 
the most extreme case, when all weights are being shared—except 
the ones defining the orbital-specific backflow—this number 
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Fig. 3 | Results when reusing pretrained weights for four different sets of molecules. Each panel depicts the energy deviation between DeepErwin and 
a high-accuracy MRCI reference calculation as a function of training epochs. The three lines correspond to three distinct experiments: independent 
optimization without reusing weights (blue), reusing weights that were pretrained on different geometries of the same molecule (purple) and reusing 
weights which were pretrained on a different, smaller molecule (red). Boxplots as in Fig. 2. Dashed horizontal lines (gray) correspond to an error of  
1 kcal mol−1 (1.6 mHa), commonly referred to as ‘chemical accuracy’. a, Reusing weights for 16 H4

+ geometries. b, Reusing weights for 23 H6 geometries.  
c, Reusing weights for 23 H10 geometries. Pretraining on smaller molecules was performed on H6. Note that the reference energies here differ slightly from 
the reference energy in Fig. 1c, which was not available for the complete set of considered H10 geometries. d, Reusing weights for 20 ethene geometries. 
Pretraining on smaller molecules was done on methane.
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grows to roughly 95% (Fig. 1a). Note that precise counts for the 
numbers of total and shared model parameters used for the experi-
ments in this section slightly differ between different molecules 
(Supplementary Table 2).

We evaluate both of these set-ups by computing the PES of four 
different molecules; namely, H+

4 , the linear hydrogen chains H6 and 
H10, and ethene. For H+

4 , we consider a diverse set of 112 different 
configurations, covering both low-energy relaxed geometries and 
strongly distorted configurations. For both hydrogen chains, we cal-
culate the wavefunction of the ground state for 49 different nuclear 
geometries that lie on a regular grid with respect to a parametriza-
tion based on the distance a of two adjacent hydrogen atoms and 
the distance x between these H2 pairs. The corresponding PES for 
H10 is visualized in the subsequent section on calculating transition 
paths and forces. In the case of twisted ethene, the set of 30 geome-
tries iterates over ten different twist angles and three different bond 
lengths for the C=C bond. The section on calculating transition 
paths and forces contains a plot of the obtained minimum-energy-
path from the non-twisted equilibrium geometry to the 90∘ rotated 
molecule, considering for each twist angle the C=C bond length 
with the lowest energy.

For all four molecules, we compare the optimization of the wave-
function models when applying weight-sharing with the respec-
tive independent optimizations. The results of these experiments 
are compiled in Fig. 2. Across all physical systems, the optimiza-
tion converges fastest when 95% of the weights are being shared. In 
particular, we find that in this case, the reference energy (MRCI-
F12(Q)/cc-pVQZ-F12; see Methods for computational details) can 
be reached, up to chemical accuracy, between 6 and 13 times faster 
than when optimizing the respective geometries independently of 
each other.

To test our findings in this section against a more difficult 
benchmark, we also performed an additional experiment in which 
independent optimizations for different ethene configurations 
were fully initialized with weights from a wavefunction that had 
already been optimized for a similar but different molecular con-
figuration using an independent optimization scheme. Although 
this approach seems to be advantageous during early optimization 
over a scheme that applies a weight-sharing constraint for 95% of 

the weights in the model, at the time that the wavefunctions reach 
chemical accuracy, shared optimization without pretraining yields 
an improvement in accuracy that is comparable with the results 
shown in Fig. 2. Detailed results for this experiment can be found in 
Supplementary Fig. 3.

Shared optimization as pretraining. Results from the previous sec-
tion show that even in a setting where ground-state wavefunctions 
are closely approximated for a wide range of nuclear geometries by 
different instances of our model, the overwhelming number of free 
parameters can in fact be identical across those instances. This sug-
gests that parts of our model that were successfully optimized using 
a weight-sharing constraint encode general computational building 
blocks that are well suited for the approximation of different wave-
functions. In particular, one could hope that those building blocks 
also generalize well to molecular geometries for which they were 
not previously optimized.

To test this hypothesis, we consider for each of the four molecules 
from the previous experiment a small new set of nuclear geometries 
that were not part of the original shared optimization. For these sets, 
we compare two types of independent optimization. In one case, 
a default random method is used to initialize the weights of the 
neural networks before optimization. In the second case, we reuse 
results from the previous optimization in the sense that all weights 
of the model that were shared in the first experiment are now initial-
ized from the result of this optimization. For the remaining 5% of 
weights, default random initialization is applied.

Pushing this approach even further, we also use previously 
optimized shared weights to initialize wavefunction models for an 
entirely different molecule. In particular, we use shared weights 
that were optimized for the hydrogen chain H6 to initialize models 
for H10, and weights that were optmized for methane to initialize 
models for ethene. This is possible as the embedding network archi-
tecture is independent of the number of particles in the respective 
molecule. If successful, this method can be used to pretrain weights 
for large and expensive molecules by solving the Schrödinger equa-
tion for smaller, computationally cheaper systems.

The results of these experiments are shown in Fig. 3. For all four 
considered molecules, we used weights that were optimized with 
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4  along reaction 

path between symmetry-equivalent minima, via transition state 1 as defined in ref. 22. DeepErwin with weight-sharing constraints is in perfect agreement 
with MRCI (MRCI-F12(Q)) and coupled clusters (CCSD(T)-F12) after 7,000 optimization epochs per geometry. Hartree–Fock and a complete active space 
calculation (CAS AV7Z) underestimate the barrier height. b, Energies for ten geometries that describe a twist around the carbon–carbon double bond for 
twisted ethene from 0° to 90°. Results for DeepErwin with and without weight-sharing are plotted after 8,192 optimization epochs per geometry.
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a shared weight constraint on a set of different geometries (Fig. 2) 
for 8,192 optimization epochs per geometry. Across all systems, 
pretraining via shared optimization with different geometries 
of the same molecules dramatically accelerates the subsequent 
optimization such that the reference energy can be consistently 
reached up to chemical accuracy after little more than a hundred 
optimization epochs. In the case of H10, the usage of weights that 
were pretrained on different configurations of a smaller molecule 
also yields substantial, albeit much smaller improvements. When 
using methane configurations to pretrain a wavefunction model for  
ethene, however, we could only find slight improvements during 
early optimization.

Calculating transition paths and forces. The substantial speed-ups 
obtained through weight-sharing enable efficient computational 
studies for systems that consist of many different geometries of the 
same molecule. We demonstrate the capabilities of our approach on 
two exemplary tasks: finding transition paths and calculating poten-
tial energy surfaces. As a first example, we calculate the transition 
path for H+

4  between two symmetry-equivalent minima via a spe-
cific transition state previously proposed in the literature22. For all 19 
points along the transition path, wavefunctions are optimized simul-
taneously for 7,000 epochs per geometry using a weight-sharing 
constraint that covers about 95% of total weights in the model. We 
furthermore compute the energies along a reaction path for twisted 
ethene which describes a rotation of the twist by 90°. The ten geome-
tries considered in this task are a subsample of the 30 geometries pre-
viously used in the computations shown in Fig. 2. As a baseline, we 
consider independent optimization without a weight-sharing con-
straint as well as classical methods from computational chemistry.

The results of these calculations are shown in Fig. 4a,b. We find 
our method to be in agreement with high-accuracy reference cal-
culations: DeepErwin with weight-sharing predicts barrier heights 
that agree with MRCI within 1 μHa (0.02%) for H+

4 , and 3.3 mHa 
(3%) for ethene. This leads us to believe that the barrier height for 
H+

4  has been underestimated by approximately 1 mHa in previous 
high-accuracy calculations22. For the electronically challenging 
case of twisted ethene, both Hartree–Fock as well as CCSD(T)-F12 
overestimate the energy of the 90° twisted molecule. DeepErwin, 
however, yields barrier energies that are much closer to the MRCI-
D-F12 reference calculations.

For calculating the transition paths, we used predefined 
sets of geometries as a given input. In many cases, however, it 
is not a priori clear which nuclear geometries are of interest in 
a given task, and a careful exploration of the respective PES is 
required. Not only are energies are required to do this efficiently, 
but also forces on the nuclei (that is, gradients of the energy 
with respect to the nuclear coordinates). For realizations of  
the DeepErwin wavefunction model, these forces can be calcu-
lated in a straightforward and computationally efficient fashion 
via the Hellman–Feynman theorem23 and by applying estab-
lished variance correction schemes to accelerate convergence of 
the Monte Carlo integration (Methods). The PES and the corre-
sponding forces for the linear hydrogen chain H10, evaluated on a 
regular grid of 49 geometries, are depicted in Fig. 5a,b. The cor-
responding wavefunctions were optimized for 8,192 epochs per 
geometry using a weight-sharing constraint for approximately 
95% of the model weights. We find that the energetic minimum 
is given by the dimerization into five H2 molecules with a cova-
lent bond of a = 1.4 Bohr each, rather than for an equally spaced 
arrangement of atoms. This is an instance of the well known 
Peierls distortion24.

Figure 5c shows that the force vectors obtained by DeepErwin 
via the Hellman–Feynman theorem are in agreement with  
the forces computed from finite differences of MRCI-F12 reference 
calculations. Our computational experiments do not show any signs 
of spurious Pulay forces25, which occur when the approximated 
wavefunction is not an eigenfunction of the Hamiltonian. This sug-
gests that DeepErwin yields not only accurate energies, but also 
accurate wavefunctions.

Discussion
We found that optimized shared weights yield highly applicable 
initial weights when considering nuclear geometries for which 
the wavefunction model was not previously optimized. Even for 
molecules such as ethene, pretraining with shared optimization 
makes it possible to reach an MRCI-F12(Q)/cc-pVQZ-F12 refer-
ence calculation up to chemical accuracy after only a few hundred 
optimization epochs. A possibly attractive route towards making 
VMC optimization tractable for more complex molecules could 
be to pretrain large parts of a wavefunction model on small, com-
putationally cheap systems. In our experiments we found that the 
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optimization of H10 wavefunctions can in fact be improved sub-
stantially when using shared optimization for a set of H6 geom-
etries to pretrain the respective models. In the case of ethene, 
however, we could only see small improvements during early 
optimization when parts of the respective model were pretrained 
on sets of smaller methane geometries. Due to the fact that any 
optimization of DNN-based wavefunction models is highly sensi-
tive to changes in the architecture and optimization hyperparam-
eters, we would consider our findings as preliminary evidence that 
merits further research towards the development of a kind of uni-
versal wavefunction, whose neural network parts were optimized 
for a great number of diverse molecular geometries and which is 
therefore capable of closely of approximating wavefunctions of the 
ground state for many physical systems after only a brief step of 
additional optimization.

Our findings suggest a strong regularity of wavefunctions 
within the space of nuclear geometries. Further evidence for this 
is also provided by a concurrent method named PESNet, which 
was released shortly after DeepErwin was first available as a pre-
print26. PESNet is based on the FermiNet model and employs 
a meta graph neural network (GNN) to simultaneously learn 
wavefunctions for a complete PES such that after optimization, 
the model parameters for a new geometry can be predicted via 
a simple forward pass through the meta GNN. The fact that this 
approach reliably yields high-accuracy results for different con-
figurations that were sampled from a PES further underlines our 
observation that the regularity of wavefunctions within the space 
of geometries can be heavily exploited for DNN-based quan-
tum Monte Carlo methods by also enforcing regularity on large 
domains of the parameter space.

Our results do not provide a conclusive answer to whether—
for the investigated sets of molecular geometries—the considered 
weight-sharing set-ups actually limit the capability of our model 
to approximate the true wavefunctions of the ground state. In 
general, we would expect this to be the case, but judging from 
our experimental results, the loss of expressiveness introduced by 
weight-sharing regularization might often be negligible. This is 
evidenced by the fact that across all experiments, sharing 95% of 
model weights yields the same or even lower energies than the 
respective independent optimizations. Furthermore, it is not clear 
yet on what an optimal algorithm that exploits weight-sharing for 
a given task could look like. Based on our results so far, for an 
exhaustive study of the PES of a molecule, we would suggest a 
procedure where—possibly guided by estimates of the forces on 
the nuclei—geometries of interest are iteratively included in a 
shared optimization, which is eventually concluded by an addi-
tional step of independent optimization for some or all of the con-
sidered geometries.

The proposed method of weight-sharing is not limited to the 
specific architecture used in this work but could potentially be 
exploited for any neural network-based wavefunction model. Due 
to the interesting regularization properties, it could even be benefi-
cial to apply weight-sharing in a context where only the wavefunc-
tion for a single molecular geometry is of interest.

A potential drawback of the proposed method in practice is 
that shared optimization cannot easily be parallelized across mul-
tiple devices (GPUs or CPUs), because each geometry is depen-
dent on updates from all other geometries. One possibility to 
overcome this issue would be to consider an average loss across 
all geometries during gradient descent. Such a loss could easily 
be parallelized by using a separate device for each geometry. In 
our current implementation of the DeepErwin framework, how-
ever, for each epoch only a single geometry is considered during 
shared optimization, and it is therefore only possible to distribute 
the Monte Carlo samples within a batch across multiple devices, as 
it is common practice7.

Methods
For a molecule with nnuc nuclei, n↑ spin-up electrons and n↓ spin-down electrons, 
we write r = (r1, …, rn↑ , …, rn↑+n↓ ) to denote the set of cartesian electron 
coordinates, and R = (R1, …,Rnnuc ) for the set of coordinates of nuclei. The 
electron coordinates r are always assumed to be ordered such that the first n↑ 
entries correspond to spin-up electrons, whereas the last n↓ entries are coordinates 
of spin-down electrons. We write nel = n↑ + n↓ for the total number of electrons and 
Zi for the charge of the ith nucleus.

Wavefunction model. The model implemented in DeepErwin is closely 
related to the recently proposed PauliNet2. Let θ denote the set of all free 
(trainable) parameters in the model and ndet the number of enhanced Slater 
determinants. With a high-dimensional embedding of electron coordinates 
x(r;R) = (x1, …, xn↑ , …, xn↑+n↓ ) and an explicit term γ(r) for cusp correction  
in the Jastrow factor, a realization ψθ of the DeepErwin wavefunction model can  
be written as

ψθ(r) = eJ(x(r;R))+γ(r)
ndet∑

d=1

αd det[Φ↑
d (r, x(r;R))] det[Φ↓

d (r, x(r;R))], (1)

where αd ∈ R is a trainable weight, the scalar function J defining the Jastrow factor 
is represented by two fully connected feedforward neural networks, and Slater 
determinants for spin-up electrons are defined via

Φ↑

d (r, x(r;R))

=





φ↑,d
1 (r1 + s1(r, x;R))η↑,d

1 (x1) · · · φ↑,d
1 (rn↑ + sn↑ (r, x;R))η↑,d

1 (xn↑ )

...
. . .

...

φ↑,d
n↑

(r1 + s1(r, x;R))η↑,d
n↑

(x1) · · · φ↑,d
n↑

(rn↑ + sn↑ (r, x;R))η↑,d
n↑

(xn↑ )




.

(2)

Matrices Φ↓

d (r, x(r;R)) for spin-down electrons can be defined analogously. The 
single-electron orbitals φ↑,d

i  are obtained from the ndet most significant Slater 
determinants from a CASSCF method and remain fixed throughout optimization. 
The backflow shifts si as well as the backflow factors η↑,d

i  are represented by fully 
connected feedforward neural networks. The embedded coordinate xi of the ith 
electron takes into account all particle positions in the system independent of 
particle type and spin. Further details on our implementation of the coordinate 
embedding, the Jastrow factor, backflow transformationand cusp correction are 
given below.

Electron coordinate embedding. The embedding x(r; R) is a slightly simplified 
version of the SchNet embedding used for PauliNet2,18. For brevity, we extend our 
notation to also include the nuclear coordinates in the coordinates rj by defining 
rj = Rj−nel for nel < j ≤ nnuc. To embed the coordinates ri of the ith electron, we 
consider input features based on pairwise differences and distances with respect 
to all other particles in the system. Let i ∈ {1, …, nel}, j ∈ {1, …, nel + nnuc} and nrbf 
denote the number of radial basis features. We use rij = ri − rj and rij = |rij| to 
denote pairwise differences and distances, respectively, and define the pairwise 
feature vector

hij =
(
e−(rij−μ1)

2/σ2
1 , …, e−(rij−μnrbf )

2/σ2
nrbf , 1

rij + 0.01

)
∈ Rnrbf+1+3, (3)

where the mean and variance parameters are defined as

μk = cq2k and σk =
1
7
(1 + cqk), (4)

respectively, for an index k ∈ {1, …, nrbf}, a parameter qk that is chosen from an 
equidistant grid of the interval [0, 1], and a cutoff parameter c ∈ R.

For a fixed integer L and an embedding dimension nemb, let (
g l ,wl

same,wl
op,wl

nuc

)L

l=0
 and 

(
f lsame, f lop

)L

l=1
 denote sequences of vector-valued 

functions, where each function is represented by a fully connected feedforward 
neural network with output dimension nemb. To embed the coordinates of the ith 
electron based on the pairwise feature vectors hij, we use ⊙ to denote element-wise 
multiplication and define for i ∈ {1, …, nel}

x0i = g0





nel∑

j = 1

j ̸= i

w0
σ ij
(hij) ⊙ f 0σ ij

+

nel+nnuc∑

j=nel+1
w0
nuc(hij) ⊙ f 0Zj−nel





, (5)
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xli

= gl





nel∑

j = 1

j ̸= i

wl
σ ij
(hij) ⊙ f lσ ij

(xl−1
j ) +

nel+nnuc∑
j=nel+1

wl
nuc(hij) ⊙ f lZj−nel




with 1 ≤ l ≤ L,

(6)

where σij = same for same-spin pairs of electrons and σij = op for pairs of electrons 
with opposite spin; f 0same, f 0op and f 0Zj−nel

, …, f LZj−nel
 denote trainable vectors of length 

nemb. The embedding of the ith electron coordinates ri is eventually defined as

xi = xLi . (7)

The embedding originally applied in PauliNet has an additional residual term in 
equation (6) and considers specific functions 

(
g l
)L

l=0
 for same-spin, opposite-spin 

and nuclear input channels.

Backflow transformation. Based on the embedding x(r; R), our model applies 
spin-dependent backflow shifts and factors to the single-electron orbitals in the 
Slater determinants (equation (2)). For simplicity, this section only considers the 
spin-up case.

Let η↑
gen denote a vector-valued function that is represented by a fully 

connected feedforward neural network, and ωbf ∈ R a single spin-independent 
trainable weight. For the ith orbital and the jth electron in the dth Slater 
determinant, the backflow factor is computed as

η↑,d
i (xj) = 1 + ωbf η̂↑,d

i (η↑

gen(xj)), (8)

where η̂↑,d
i  denotes an orbital-specific function that is also represented by a 

feedforward neural network.
The inner function η↑

gen can be seen as an extension of the embedding layer. 
Apart from electron spin orientation, it remains unchanged across electrons and 
determinants and is hence called a general backflow factor. The outer function η̂↑,d

i
, on the other hand, is specific to the ith orbital in the dth determinant obtained 
from a CASSCF method. The motivation behind defining the backflow factor via 
the composition of these two functions was to maximize the number of neural 
networks weights than can possibly be shared across nuclear geometries. Note that 
for two distinct nuclear geometries, CASSCF does in general not yield the same 
number of unique orbitals. Although this does not raise an issue for the general 
backflow factor η↑

gen, it implies that sharing the neural network weights that define 
η̂↑,d
i  across nuclear geometries is in general not possible in a meaningful way.

Based on ideas from ref. 27, the backflow shift is based on rotation-invariant 
features and rotation-equivariant pairwise differences. It is furthermore split into 
an electron–electron and an electron–nucleus part. Aside from the embedding, we 
also use side products of the embedding network as inputs and define the following 
feature vectors

f eli = (wL
σ i1
(hi1) ⊙ f Lσ i1

(xL−1
1 ), …,wL

σ inel
(hinel ) ⊙ f Lσ inel

(xL−1
nel )) (9)

and

f nuci = (wL
nuc(hi(nel+1)) ⊙ f LZ1

, …,wL
nuc(hi(nel+nnuc)) ⊙ f LZnnuc

) (10)

for i ∈ {1, …, nel}. All features are obtained without further cost at the end of the 
embedding loop (equation (6)). The electronic part of the shift for the ith electron 
is defined as

seli (r, xi , f
el
i ) =

nel∑

k = 1

k ̸= i

ŝel(xi , f elik )
rik

1 + r3ik
. (11)

In contrast to the backflow factor, we do not differentiate between different spins to 
reduce complexity. Similarly, the electron–nuclear shift is computed via

snuci (r,R, xi , f nuci ) =

nnuc+nel∑

k=nel+1

ŝnuc(xi , f nucik )
rik

1 + r3ik
, (12)

where ŝel and ŝnuc are represented by feedforward neural networks. A decay in the 
vicinity of nuclei ensures that the applied backflow shifts do not lead to a violation 
of the Kato cusp condition28. The complete backflow shift is computed by

si(r,R, xi , f eli , f
nuc
i ) = ωsh

∏

n
tanh (2Zn|ri − Rn|)

2
(
seli (xi , f

el
i ) + snuci (xi , f nuci )

)
,

(13)

with a spin-independent trainable weight ωsh ∈ R.

Jastrow factor. With two spin-dependent scalar functions J↑ and J↓ that are 
represented by fully connected feedforward neural networks, the Jastrow  
factor (equation (1)) is defined as

J (x(r;R)) =

n↑∑

i=1
J↑(xi) +

nel∑

i=n↑+1
J↓(xi). (14)

Cusp correction. The Kato cusp condition28 is a necessary condition for eigenstates 
of the Hamiltonian H. It ensures that the local energies of a wavefunction ψ are 
finite by forcing the kinetic energy term ∇2ψ to diverge in such a way that it exactly 
cancels the divergence caused by the potential energy term Zn/∣ri − Rn∣ when the ith 
electron approaches the nth nucleus. The orbitals φ↑,d

i  (φ↓,d
i ) yielded by a CASSCF 

method (equation (2)) in general do not lead to enhanced Slater determinants that 
satisfy the cusp condition. We follow the approach outlined in ref. 19 to address 
this issue: within a radius Rcusp around the nuclei, we replace the molecular orbitals 
by an exponentially decaying function that satisfies the Kato cusp condition, 
transitions smoothly into the orbitals at Rcusp and minimizes the variance of the 
local energy of this orbital. Cusp correction for the enhanced Slater determinants 
is performed after the initial set of orbitals has been obtained from a CASSCF 
calculation and remains fixed during the optimization of the wavefunction 
parameters θ.

To account for electron–electron cusps in the Jastrow factor (equation (1)),  
we use an explicit term

γ(r) =

nel∑

i=1

nel∑

j=i+1

rij
rij + 1

, (15)

similar to the one applied in ref. 1.

Variational Monte Carlo. We use a standard variational Monte Carlo approach to 
optimize our wavefunction ansatz. Let

H = Ekin + Epot (16)

denote the electronic Hamiltonian as obtained within the Born–Oppenheimer 
approximation, with

Ekin = −
1
2
∑

i
∇

2
ri , (17)

Epot =
∑

i>j

1
|ri − rj|

+
∑

n>m

ZnZm

|Rn − Rm|
−

∑

i,n

Zn

|ri − Rn|
, (18)

where Ekin accounts for the kinetic energy of the electrons and Epot accounts for 
the attraction and repulsion between particles in the system. By the Rayleigh–Ritz 
variational principle, it holds for any wavefunction ψθ that its energy Eθ is greater 
than or equal to the ground-state energy E0 of the eigenfunction of H associated to 
the smallest eigenvalue, that is,

Eθ =

∫ ψθ(r)Hψθ(r)
Ωθ

dr ≥ E0, (19)

where Ωθ = ∫ψθ(r)2dr denotes a normalization factor.
To evaluate the energy Eθ for a given set of parameters θ, we use Markov chain 

Monte Carlo integration (MCMC) and sample electron coordinates according to 
the probability density

pθ(r) =
ψθ(r)2

Ωθ
. (20)

This allows us to express the total energy Eθ as the expected value of a local energy

Eloc(r) =
Hψθ(r)
ψθ(r)

, (21)

in the sense that

Eθ =

∫
Eloc(r)pθ(r)dr = ⟨Eloc⟩ ≈

1
N

N∑

k=1

Eloc(rk), (22)

where N denotes the number of sampled electron coordinates and rk ~ pθ.
To optimize the parameters θ, we use K-FAC20 which was already implemented 

in FermiNet4 to minimize the local energy Eloc(rk) at the location of electron 
coordinates rk. DeepErwin also supports the limited-memory Broyden–Fletcher–
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Goldfarb–Shanno algorithm29, which is another second-order method, as 
well as standard first-order stochastic gradient descent as implemented by the 
Adam algorithm21. After each optmization epoch, (that is, after each sample of 
coordinates was used exactly once for a gradient descent step), the coordinates rk 
are resampled to reflect the updated probability distribution pθ. By applying this 
procedure iteratively for a large number of epochs, we eventually obtain parameters 
θ such that the wavefunction ψθ closely approximates the wavefunction of the 
ground state for the considered molecule.

To increase numerical stability, the implementation of our ansatz does not 
directly model ψθ, but the logarithm of its square. The local energy can then be 
computed as

Eloc(r) = Epot(r) −
1
4
∇

2
rϕθ(r) −

1
8
(∇rϕθ)

2
(r), (23)

where ϕθ = log(ψ2
θ).

Although the local energy already contains second derivatives (with respect 
to r), calculating the gradient with respect to θ does not require the calculation of 
third derivatives, as H is Hermitian30. Precisely, it holds that

∇θEθ = ⟨Eloc∇θϕθ⟩ − ⟨Eloc⟩ ⟨∇θϕθ⟩ (24)

≈
1
N

N∑

k=1

Eloc(rk)∇θϕθ(rk) −
1
N2

( N∑

k=1

Eloc(rk)
)( N∑

k=1

∇θϕθ(rk)
)

, (25)

for N samples of electron coordinates rk ~ pθ.
To approximate the distribution of electron coordinates defined by the density 

pθ, we typically use about 2,000 independent MCMC chains (walkers), where each 
walker is initialized before optimization with a large number (~1,000) of burn-in 
steps. During optimization, walkers are updated after every epoch with a small 
number (~10) of extra MCMC steps. To precisely estimate the energy Eθ after 
optimization has concluded, we apply a similar procedure, but collect the local 
energies for all walkers from roughly 1,000 intermediate steps in the respective 
MCMC chain.

For single steps in the MCMC chains, we use a Metropolis–Hastings 
algorithm31. Given a current walker state r, a proposal state rprop for the Metropolis–
Hastings algorithm is generated according to the probability density

p(rprop|r) =

nel∏

i=1
pN

(
r prop
i |μ = ri , σ2

= (di)2
)
, (26)

where pN  denotes the density of a three-dimensional normal distribution and the 
variance parameters di are defined for fixed parameters d0, dmin, dmax, δ ≥ 0 as

di = δ min
(
dmin +

|ri − Rn|

d0
, dmax

)
, (27)

where Rn denotes the position of the nucleus closest to ri, that is, 
n = argminj=1,…,nnuc |ri − Rj|. We then consider the canonical acceptance 
probability

pacc(rprop|r) = min
{
1, p(r|r

prop)pθ(rprop)
p(rprop|r)pθ(r)

}
, (28)

and for a sample α ∈ [0, 1] from a uniform distribution, the proposed sample rprop is 
accepted in the case pacc(rprop∣r) > α and rejected otherwise.

The parameters di defined in equation (27) can be seen as step size parameters 
that regulate the average distance between electron coordinates r and a proposal 
rprop. In general, smaller step sizes lead to higher acceptance rates for proposed 
samples. The parameter δ is a general step size parameter that is gradually adapted 
during optimization to yield an average acceptance rate of 50%. The second factor 
in equation (27) was specifically designed to take into account that wavefunctions 
are usually most complex in the proximity of a nucleus; that is, the step size di is 
chosen for each electron i to depend on its distance to the closest ion to encourage 
smaller steps close to the nuclei (where the wavefunction varies rapidly) and larger 
steps (when an electron is further away from the nuclei).

Note that the step sizes di, and thus the proposal probability, depend on the 
electron positions r. In general it is therefore not true that p(rprop∣r) = p(r∣rprop). 
However, due to our choice for the acceptance probability pacc, the so-called 
detailed balance condition is still satisfied; that is, being in a state r and 
transitioning to rprop is as probable as being in rprop and transitioning to r.

Forces. For a given molecule, let ψ0 denote the wavefunction of the ground state, 
that is, ψ0 is the eigenfunction of the H associated with the smallest eigenvalue. To 
calculate the electronic forces Fm acting on the mth nuclei, we apply the Hellmann–
Feynman theorem23 and compute

Fm = −∇RmE0 = −
1
Ω0

∫
ψ0(r)((∇RmH)ψ0)(r)dr (29)

= Zm
1
Ω0

∫
ψ0(r)

2
(
∑

i

ri − Rm

|ri − Rm|3

)
dr −

∑

n ̸=m
Zn

Rn − Rm

|Rn − Rm|3
(30)

≈ Zm



 1
N

∑

k

∑

i

rki − Rm

|rki − Rm|3
−

∑

n̸=m
Zn

Rn − Rm

|Rn − Rm|3



 , (31)

for N samples of electron coordinates rk ~ ψ0(r)2/Ω0, and where Ω0 = ∫ψ0(r)2dr 
denotes the L2-norm of ψ0.

As it is no longer necessary to compute derivatives of the wavefunction, 
evaluating equation (31) should be relatively easy. However, unlike the local energy 
(equation (22)), which has zero variance for eigenstates of the Hamiltonian, naive 
Monte Carlo sampling cannot be applied in this case due to the divergence of 
∣ri − Rk∣−3 when the ith electron approaches the kth nucleus.

This issue can be addressed by observing that for each diverging term on  
one side of a nucleus, there is an equally diverging term with the opposite sign  
on the other side of the nucleus. Different variance reduction methods have  
been proposed to exploit this property, such as fitting the force density close  
to a nucleus with a function that is constrained to be zero at ri = Rk (ref. 32) or 
antithetic sampling32,33.

We minimize the variance of force samples by combining antithetic sampling 
with a truncated 1/r potential: for each sample of electron coordinates rk yielded by 
a Markov chain, we also consider an additional sample r̂k in which each electron 
within a distance of Rcore to the closest nucleus is mirrored to the opposite side of 
this nucleus.

r̂ k,i
= rki + 2(Rm − rki ) (32)

for i ∈ {1, …, nel} and m = argminn|ri − Rn|; therefore, whenever an electron 
comes close to a nucleus and thus generates a large force in one direction, there will 
always be a cancelling contribution in the opposite direction. Note that the samples 
r̂ k,i do not necessarily have the same probability as the original sample rk. Their 
contribution to the Monte Carlo estimate is thus weighted by ψ (̂r k,i)2

ψ(rk)2 . Furthermore, 
we avoid numerical instabilities by replacing the raw Coulomb forces with a scaled 
version that decays towards zero, as electrons approach a nucleus:

rki − Rm

|rki − Rm|3
−→

rki − Rm

|rki − Rm|3
tanh3

(
|rki − Rm|

Rcut−off

)
(33)

Shared optimization of model parameters. For N distinct nuclear geometries 
R1, R2, …, RN, let θsh denote the set of model parameters that are shared across all 
geometries, and θ̂k denote the set of parameters that are specific to the kth set of 
nuclear coordinates Rk. The full set of parameters for the kth geometry can then be 
written as θk = (θsh, θ̂k

), and the associated realization of the wavefunction model 
is denoted by ψθk. During each shared optimization epoch, we consider a single 
nuclear geometry Rk and update the respective model weights θk with respect  
to the local energies of the wavefunction ψθk at MCMC walker positions that  
were sampled from the probability density pθk (equation (20)). That is, during  
each shared optimization epoch, not only the geometry-specific weights are 
updated, but also the shared weights θsh, and therefore the wavefunctions for all 
nuclear geometries.

A straightforward way of deciding which geometry to consider for a shared 
optimization epoch is to employ a simple round-robin scheme. Note that for 
each eigenstate of the Hamiltonian, the local energies defined in equation (21) 
have zero variance. Therefore, another approach to select geometries for a shared 
optimization epoch is to use the standard deviation of local energies as a proxy 
of how closely a realization of the wavefunction model already approximates the 
wavefunction of the ground state. By selecting the geometry for which the current 
wavefunction has the highest standard deviation in the local energies, we ensure 
that geometries for which the parameters have not yet been well optimized get 
more attention during optimization. In practice, we train a few initial epochs using 
the round-robin scheme to obtain a reliable starting point for each wavefunction 
and then switch to the standard-deviation-based scheme, to ensure homogeneous 
convergence of the accuracy across all geometries.

In our implementation of the shared optimization scheme, we use a single 
instance of the optimizer to update the set of shared weights θsh, as well as an 
additional instance for each of the geometry-specific sets of model parameters. In 
particular, due to the fact that geometry-specific weights receive fewer gradient 
descent updates than shared weights, the learning rate for the geometry-specific 
optimizers are usually chosen about ten times larger than the learning rate for the 
optimizer of the shared weights (Supplementary Table 1).

After the shared optimization process, the wavefunctions can again be 
treated as fully independent realizations of our wavefunction model and are not 
constrained by any additional dependencies. In particular, this means that the 
evaluation of their exact energy can easily be parallelized across geometries.
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Reference calculations. To validate our deep learning method, we compared the 
obtained energies to reference values, which we computed using the MOLPRO 
package34,35. We employed both single- and multi-reference explicitly correlated 
F12 methods: coupled cluster with singles, doubles and perturbative triples 
(CCSD(T)-F12)36 and MRCI-F1237. The basis set cc-pVQZ-F1238 was used for 
all geometries of H+

4 , H6 and C2H4. Due to convergence issues with this basis set 
for some geometries of H10, the smaller cc-pVTZ-F12 basis set was employed 
for this molecular system. For the MRCI-F12 calculations, a CASSCF reference 
was used with a full-valence active space (H+

4 : three electrons in three orbitals 
abbreviated as (3, 3), H6: (6,6), H10: (10,10)). A full-valence active space was 
prohibitively expensive for C2H4, which is why we resorted to an active space of 
(2,2). The recommended GEM_BETA coefficients were used (that is, for MRCI-
F12(Q)/cc-pVQZ-F12 calculations GEM_BETA = 1.5 a−1

0  and for MRCI-F12(Q)/
cc-pVTZ-F12 calculations GEM_BETA = 1.4 a−1

0 )39. The Davidson-corrected40 
energy values (MRCI-F12(Q)) were extracted, as provided by the energyd variable 
in MOLPRO.

We note that these accurate methods and basis sets were only used to validate 
our results, but not as a starting point for our deep learning method. The orbitals 
used as a starting point for our method were generated using the CASSCF method 
implemented in PySCF41, using a 6-311G Pople basis set.

Computational settings for DeepErwin. Reference values for the results shown 
in Fig. 2 were obtained via MRCI-F12(Q)/cc-pVQZ-F12. A detailed description of 
these calculations can be found in the previous section.

In all cases, we used the described method from the previous section as a 
reference; however, two geometries were excluded from the reference set for 
the initialization from the H10 run, as these were also included in the pretrained 
geometry grid.

The main hyperparameters used for all computations are listed in 
Supplementary Table 1. Detailed counts of total, trainable and shared parameters 
for the used wavefunction models for the four main molecules considered in our 
numerical experiments are compiled in the Supplementary Table 2.

Data availability
All data in this manuscript were generated using the Python package DeepErwin  
or the quantum-chemistry code MOLPRO as described in Methods. All data 
required to perform the reported calculations as well as the processed data that was 
used to generate figures are available on Code Ocean42. Source data are provided 
with this paper.

Code availability
The DeepErwin package alongside a detailed documentation is available on 
the Python Package Index (PyPI) and GitHub (https://github.com/mdsunivie/
deeperwin) under the MIT license. All codes and configuration files that were  
used to perform the reported calculations are also available on Code Ocean42.
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Towards a transferable fermionic neural
wavefunction for molecules

Michael Scherbela1,4, Leon Gerard2,4 & Philipp Grohs 1,2,3

Deep neural networks have become a highly accurate and powerful wave-
function ansatz in combination with variational Monte Carlo methods for
solving the electronic Schrödinger equation. However, despite their success
and favorable scaling, these methods are still computationally too costly for
wide adoption. A significant obstacle is the requirement to optimize the
wavefunction from scratch for each new system, thus requiring long optimi-
zation. In this work, we propose a neural network ansatz, which effectively
maps uncorrelated, computationally cheap Hartree-Fock orbitals, to corre-
lated, high-accuracy neural network orbitals. This ansatz is inherently capable
of learning a single wavefunction acrossmultiple compounds and geometries,
as we demonstrate by successfully transferring a wavefunction model pre-
trained on smaller fragments to larger compounds. Furthermore, we provide
ample experimental evidence to support the idea that extensive pre-trainingof
such a generalized wavefunction model across different compounds and
geometries could lead to a foundation wavefunction model. Such a model
could yield high-accuracy ab-initio energies using onlyminimal computational
effort for fine-tuning and evaluation of observables.

Accurate predictions of quantummechanical properties formolecules
is of utmost importance for the development of new compounds, such
as catalysts, or pharmaceuticals. For eachmolecule the solution to the
Schrödinger equation yields the wavefunction and electron density,
and thus in principle gives complete access to its chemical properties.
However, due to the curse of dimensionality, computing accurate
approximations to the Schrödinger equation quickly becomes com-
putationally intractable with increasing number of particles. Recently,
deep-learning-based Variational Monte Carlo (DL-VMC) methods have
emerged as a high-accuracy approach with favorable scaling OðN4Þ in
the number of particles N1. These methods use a deep neural network
as ansatz for the high-dimensional wavefunction, and minimize the
energy of this ansatz to obtain the ground-state wavefunction. Based
on two major architectures for the treatment of molecules in first
quantization, PauliNet1 and FermiNet2, several improvements and
applications have emerged. On the one hand, enhancements of
architecture, optimizationandoverall approachhave led to substantial

improvements in accuracy or computational cost3–7. On the other
hand, these methods have been adapted to many different systems
and observables: model systems of solids8,9, real solids10, energies and
properties of individual molecules1,2,5,11, forces12,13, excited states14 and
potential energy surfaces13,15,16. Furthermore, similar methods have
been developed and successfully applied to Hamiltonians in second
quantization17,18.

We want to emphasize that DL-VMC is an ab-initio method, that
does not require any input beyond the Hamiltonian, which is defined
by the molecular geometry. This differentiates it from surrogate
models, which are trained on results from ab-initio methods to either
predict wavefunctions19,20 or observables21.

Despite the improvements in DL-VMC, it has not yet been widely
adopted, in part due to the high computational cost. While DL-VMC
offers favorable scaling, the method suffers from a large prefactor,
caused by an expensive optimization with potentially slow con-
vergence towards accurate approximations. Furthermore this
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optimization needs to be repeated for every new system, leading to
prohibitively high computational cost for large-scale use. This can be
partially overcome by sharing a single ansatz with identical parameters
across different geometries of a compound, allowing more efficient
computation of Potential Energy Surfaces (PES)13,15,16. However, these
approaches have been limited to different geometries of a single
compound and do not allow successful transfer to new compounds. A
key reason for this limitation is that current architectures explicitly
depend on the number of orbitals (and thus electrons) in a molecule.
Besides potential generalization issues, this prevents a transfer of
weights between different compounds already by the fact that the
shapes of weight matrices are different for compounds of differ-
ent size.

In this work we propose a neural network ansatz, which does not
depend explicitly on the number of particles, allowing to optimize
wavefunctions across multiple non-periodic, gas-phase compounds
with multiple different geometric conformations. We find, that our
model exhibits strong generalization when transferring weights from
small molecules to larger, similar molecules. In particular we find that
our method achieves high accuracy for the important task of relative
energies. Our approach is inspired by the success of foundation
models in language22 or vision23,24, where models are extensively pre-
trained and then applied to new tasks—either without any subsequent
training (referred to as zero-shot evaluation) or after small amount of
training on the new task (referred to as fine-tuning). Zhang et al.25 have
shown that this paradigm can be successfully applied to wavefunc-
tions, in their case for model Hamiltonians in second quantization.

In this work, we pre-train a first base-model for neural network
wavefunctions infirst quantization, and evaluate thepre-trainedmodel
by performing predictions on chemically similar molecules (in-dis-
tribution) and disparate molecules (out-of-distribution). We find that
our ansatz outperforms conventional high-accuracy methods such as
CCSD(T)-ccpVTZ and that fine-tuning our pre-trained model reaches
this accuracy ≈ 20x faster, than optimizing a new model from scratch.
When analyzing the accuracy as a function of pre-training resources,
we find that results systematically and substantially improve by scaling
up either the model size, data size or number of pre-training steps.
These results could pave the way towards a foundation wavefunction
model, to obtain high-accuracy ab-initio results of quantum mechan-
ical properties using onlyminimal computational effort for fine-tuning
and evaluation of observables.

Additionally we compare our results to GLOBE, a concurrent
work26, which proposes reparameterization of the wavefunction based
on machine-learned, localized molecular orbitals. We find that for the
investigated setting of re-using pre-trained weights our method in
comparison achieves lower (and thus more accurate) absolute ener-
gies, higher accuracy of relative energies and is better able to gen-
eralize across chemically different compounds.

We use the following notation throughout this work: All vectors,
matrices and tensors are denoted in bold letters, including functions
with vectorial output. The i-th electron position for i∈ {1,…, nel} is
denoted as ri 2 R3. The set fr1, . . . ,rn"

g of all electrons with spin up is
abbreviated with {r↑}, the set frn" + 1

, . . . ,rnel
g of all spin-down electrons

as {r↓}. Similarly, the nuclear positions and charges of a molecule are
denoted by RI 2 R3 and ZI 2 N, I = 1,…,Natoms, with the set of all
nuclear positions and their corresponding charges denoted as {(R,Z)}.
Indices i, k∈ {1,…, nel} correspond to electrons and orbitals respec-
tively, whereas I, J∈ {1,…,Natoms} correspond to nuclei. By 〈 ⋅ , ⋅ 〉 the
dot product is denoted.

Results
In the following, we briefly outline our approach and how it extends
existing work (A multi-compound wavefunction ansatz). We show the
fundamental properties of our ansatz such as extensivity and equiv-
ariance with respect to the sign of reference orbitals. We demonstrate

the transferability of the ansatz when pre-training on small molecules
and re-using it on larger, chemically similar molecules. We also com-
pare its performance against GLOBE, a concurrent work26. Lastly, we
present a first wavefunction base model pre-trained on a large diverse
dataset of 360 geometries and evaluate its downstream performance.

A multi-compound wavefunction ansatz
Existing high-accuracy ansätze for neural network wavefunctions ψ all
exhibit the following structure:

hi =hθðri,fr"g,fr#g,fðR,ZÞgÞ
hi 2 RDemb , i= 1 . . .nel

ð1Þ

Φd
ik =φ

d
k ðriÞhFd

k ,hii
φd

k ðriÞ : R3 ! R, Fd
k 2 RDemb

i,k = 1 . . .nel, d = 1 . . .Ndet

ð2Þ

ψ=
XNdet

d = 1

det Φd
ik

h i
i,k = 1...nel

ð3Þ

The neural network hθ in eq. (1) computes a Demb-dimensional
embedding hi of electron i, by taking in information of all other par-
ticles, e.g., by using attention or message passing. Eq. (2) maps these
high-dimensional embeddings onto nel ×Ndet orbitals (indexed by k),
using trainable backflow matrices Fd and typically trainable envelope
functions φd

k : R3 ! R. Eq. (3) evaluates the final wavefunction ψ as a
sum of (Slater-)determinants of these orbitals, to ensure anti-
symmetry with respect to permutation of electrons.

By considering the interaction of all particles, in particular with
the sets {r↑} and {r↓}, the functions in Eq. (2) account for the inter-
particle correlation and therefore are able to better represent the true
ground-state wavefunction. If the orbitalsΦd

ik would only depend on ri
(instead of the many-body embedding hi), they would correspond to
single-particle functions, e.g. Hartree-Fock orbitals. Existing methods,
as proposed in Pfau et al.2 or Hermann et al.1, differ in the way the
embedding hi and the envelope functions φd

k are built. A popular
choice for the embedding function hθ are continuous convolutions

1,5,26

or an attention mechanism4. For the envelope functions Hermann
et al.1 proposed to use orbitals obtained from a Hartree-Fock calcula-
tion, whereas Pfau et al.2 relied on exponentially decaying envelopes,
(i.e., φkðrÞ= expð�αkI jr� RjÞ with trainable parameter αkI 2 R), to
ensure the boundary conditions far away from the nuclei. In our
architecture, we mainly focus on the matrix
Fd = ½Fd

1 , . . . ,F
d
nel
� 2 Rnel ×Demb . While the mapping by Fd works well for

the wavefunction of a single compound, it is fundamentally unsuited
to represent wavefunctions for multiple different compounds at once,
since its dimension nel ×Demb depends explicitly on the number of
electrons. There are several potential options, how this challenge
could be overcome. A naïve approach would be to generate a fixed
number of Norb ≥ nel orbitals and truncate the output to the required
number of orbitals nel, which may differ across molecules. While sim-
ple to implement, this approach is however fundamentally limited to
moleculeswithnel ≤Norb. Another approach is to use separatematrices
Fd
G for each molecule or geometry G, as was done in13, but also this

approach can fundamentally not represent wavefunctions for mole-
cules that are larger than the ones found in the training set. A third
approach would be to not generate all orbitals in a single pass, but
generate the orbitals sequentially in an auto-regressive manner, by
conditioning each orbital on the previously generated orbitals. While
this approach has been successful in other domains such as language
processing, it suffers from inherently poor parallelization due to its
sequential nature. A final approach—chosen in this work—is to replace
the tensor F with a trainable function foθðcIkÞ, which computes the
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backflows based on some descriptor cIk 2 RNbasis of the orbital k to be
generated:

φd
θ ðri,RI ,cIkÞ= exp �jri � RI j ge,d

θ ðcIkÞ
� �

ð4Þ

Φd
ik =

XNatoms

I = 1

φd
θ ðri,RI ,cIkÞ fo,dθ ðcIkÞ,hi

D E
ð5Þ

Similar to foθ , the trainable function ge,d
θ alsomaps somedescriptors to

scalar values for each orbital. While there are several potential
descriptors cIk for orbitals, one particularly natural choice is to use
outputs of computationally cheap, conventional quantum chemistry
methods such as Density Functional Theory or Hartree-Fock. We
compute orbital features based on the expansion coefficients of a
Hartree-Fock calculation, by using orbital localization and a graph
convolutional network (GCN), as outlined in the methods sec-
tion “Obtaining orbital descriptors from Hartree-Fock”. We then map
these features to orbitals Φd

ik , which we call in the following
transferable atomic orbitals (TAOs), using odd and even functions foθ
and ge

θ as illustrated in Fig. 1.

Properties of our ansatz
These TAOs fulfill many properties, which are desirable for a wave-
function ansatz:

• Constant parameter count: In principle, the number of para-
meters in the ansatz is independent of system size. While it
might still be necessary to increase the parameter count to
maintain uniform accuracy for systems of increasing size, TAOs
have no explicit relationship between parameter count and
system size. This is in contrast to previous approaches1,2,13 where
the number of parameters grows explicitly with the number of
particles, making it impossible to use a single ansatz across
systems of different sizes. In particular, backflows and envelope
exponents have typically been chosen as trainable parameters of
shape ½Norb ×Ndet�. In our ansatz the backflows F are instead
computed by a single function fθ from multiple inputs cIk.

• Equivariant to sign of HF-orbital: Orbitals of a HF-calculation
are obtained as eigenvectors of a matrix and are thus
determined only up to their sign (or their phase in the case of
complex eigenvectors). We enforce that the functions foθ , g

e
θ are

odd and even with respect to cIk. Therefore our orbitalsΦd
ik are

equivariant to a flip in the sign of the HF-orbitals used as inputs:
Φ(−cIk) = −Φ(cIk). Therefore during supervised pre-training, the
undetermined sign of the reference orbitals becomes irrelevant,

leading to faster convergence as demonstrated in “Equivariance
with respect to HF-phase”.

• Approximate locality: When using localized HF-orbitals as
input, the resulting TAOs are typically also localized. Localized
HF-orbitals are orbitals which have non-zero orbital coefficientseαIk only on some subset of atoms. Using our architecture
outlined in “Obtaining orbital descriptors from Hartree-Fock”,
this typically translates into local orbital features cIk. Since we
enforce the backflow foθ to be odd (and thus foθð0Þ=0), the
resulting TAOs have zero contribution from atoms I with cIk =0.
While the true wavefunction might not be fully decomposable
intopurely local contributions,many relevant chemical concepts
—such as core electrons, bonds, lone pairs, or chemical groups—
are intrinsically local concepts and locality has been successfully
used as prior in many applications, for example in Neural
Network Potentials27,28. This hints at the prior of using local
orbitals to compose many-body wavefunctions, which in turn
can still contain non-local electron-electron correlations cap-
tured via the fully connected, non-local electron embedding hi.

• High expressivity: We empirically find that our ansatz is suffi-
ciently expressive to model ground-state wavefunctions to high
accuracy. We demonstrate this both empirically (c.f. SI 1, 1 mHa
energy deviation against PsiFormer for NH3) and theoretically
(c.f. SI 2) in the supplementary information. This stands in
contrast to previous approaches based on incorporating ab-
initioorbitals1, which couldnot reach chemical accuracyeven for
small molecules.

Size consistency of the ansatz
One design goal of the ansatz is to allow transfer of weights from small
systems to larger systems. In particular, if a large system consists of
many small previously seen fragments, one would hope to obtain an
energy which corresponds approximately to the sum of the fragment
energies. One simple test case, are chains of equally spaced Hydrogen
atoms of increasing lengths. These systems have been studied exten-
sively using high-accuracy methods29, because they are small systems
which already show strong correlation and are thus challenging to
solve. We test our method by pre-training our ansatz on chains of
length 6 and 10, and then evaluating the model (with and without
subsequent fine-tuning) for chain lengths between 2 and 28. Figure 2a
shows that our ansatz achieves very high zero-shot-accuracy in the
interpolation regime (Natoms = 8) and for extrapolation to slightly lar-
ger or slightly smaller chains (Natoms = 4, 12). Even when extrapolating
to systems of twice the size (Natom = 20), our method still outperforms
aHartree-Fock calculation and eventually converges to an energy close
to the Hartree-Fock solution.

e⁻
1s
2s
px
py

pz

1s
2s
px
py

pz

1s

1s

1s

1s

ca b

Fig. 1 | Illustration of the Transferable Atomic Orbitals, demonstrated on the
C=C-bond of Ethene. a The input for each orbital are localized Hartree-Fock basis
expansion coefficients eαI , corresponding to every atom I. b We learn a repre-
sentation cIof the orbital on every atomusing a GraphNeural Network, exchanging

information across atoms. c The orbital ϕ is evaluated for electron i by combining
the electron-embedding hi with the functions of the orbital representation fθ(cI)
and gθ(cI).
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To reach the accuracy of other correlated methods, we need a
few fine-tuning steps for each new system. In Fig. 2b, c, we compare
our results after 500 and 4000 fine-tuning steps against all high-
accuracy methods from Motta et al.29, which can obtain energies
extrapolated to the thermodynamic limit (TDL).We compare for the
two system sizes, investigated in ref. 29: 10 atoms in Fig. 2b, and
extrapolation to Natoms =∞ in Fig. 2c. For H10, our method is in near
perfect agreement with their reference method AFQMC, deviating
only by 0.1 mHa, nearly independent of the number of fine-tuning
steps. This high-accuracy result is expected, since our model has
also been pre-trained on chains of length 10 (albeit with different
inter-atomic distances), and DL-VMC has previously been shown to
achieve very high-accuracy on this system1. When extrapolating to
the TDL, our zero-shot energies are not competitive with high-
accuracy methods, but instead yield energy errors comparable to
Hartree-Fock, as seen in Fig. 2a. However, fine-tuning the ansatz for
only 500 steps, yields energies that already outperform most
methods studied in ref. 29 and fine-tuning for 4000 steps yields a
deviation of 0.6 mH/atom vs. AFQMC, on par with specialized
methods such as LR-DMC.

This good performance stands in stark contrast to other approa-
ches such as GLOBE+ FermiNet or GLOBE+Moon, studied in ref. 26:
Both GLOBE-variants yield 5-6x higher errors in the interpolation
regime and both converge to much higher energies for larger chains.
While our approach yields Hartree-Fock-like energies for very long
chains, GLOBE+FermiNet and GLOBE+Moon yield results that are
outperformed even by assuming a chain of non-interacting H-atoms,
which would yield an energy per atom of -0.5 Ha. For modest extra-
polations (Natoms = 12 to Natoms = 20) our zero-shot results yield 3–20x
lower errors than GLOBE+Moon.

Equivariance with respect to HF-phase
Due to using even and odd functions for the TAOs, our orbitals are
equivariant with respect to a change of sign of the Hartree Fock
orbitals. Therefore, a sign change of the HF-orbitals during HF-pre-
training has no effect on the optimization of the wavefunction. One
test case to assure this behavior is the rotation of a H2O molecule,
where we consider a set of 20 rotations of the same geometry,
leading to a change of sign in the p-orbitals of the Oxygen atom (cf.
Fig. 3). We evaluate our proposed architecture and compare it
against a naïve approach, where we use a standard backflow matrix
F, instead of a trainable, odd function foθ . In Fig. 3 we can see a clear
spike in the HF-pre-training loss at the position of the sign flip for
the standard backflow-type architecture, causing slower con-
vergence during the subsequent variational optimization. After 16k
optimization steps the effect diminishes and no substantial
improvement on the accuracy can be observed. Although in this
specific instance the orbital sign problem could also be overcome
without our approach by correcting the phase of each orbital to
align them across geometries, phase alignment is not possible in all
circumstances. For example, there are geometry trajectories,
where the Berry phase prevents such solutions30.

Transfer to larger, chemically similar compounds
To test the generalization and transferability of our approach, we
perform the following experiment: First, we train our ansatz on a
dataset of multiple geometries of a single, small compound (e.g. 20
distorted geometries of Methane). For this training, we follow the
usual procedure of supervised HF-pre-training and subsequent
variational optimization as outlined in the methods section “Varia-
tional Monte Carlo”. After 64k variational optimization steps, we

Fig. 2 | Transferability of the ansatz to chemically similar, larger systems,
demonstrated on the example of hydrogen-chains. a Energy per atom as a
function of chain-length. While GLOBE cannot successfully transfer to larger
chains, our ansatz successfully predicts zero-shot energies (i.e. without fine-tuning)
for up to 2x longer chains. b, c Comparison of our energies per atom after 500 and
4000 fine-tuning steps vs. high-accuracymethods fromMotta et al.29. Themethods
compared in this work include: SC-NEVPT2, the strongly contracted variant of the
nel electron valence state second-order pertubation theory; VMC (LDA), variational

Monte Carlo (local density approximation); UCCSD, couple cluster theory with full
treatment of singles and doubles excitations; RCCSD and RCCSD(T), couple cluster
theory with full treatment of singles and doubles and perturbative treatment of
triple excitations using restricted Hartree-Fock as a reference state; DMET density-
matrix embedding theory, LR-DMC (LDA) lattice-regularized diffusionMonte Carlo
(local density approximation). b for the Hydrogen Chain with number of atoms
Natoms = 10 (c) for chain lengths extrapolated to the thermodynamic limit
(Natoms→∞).
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then re-use the weights for different geometries of a larger com-
pound (e.g. distorted geometries of Ethene). We fine-tune the
model on this new geometry dataset for a variable number of steps
and plot the resulting energy errors in Fig. 4. We do not require
supervised HF-pre-training on the new, larger dataset. We perform
this experiment for 3 pairs of test systems: Transferring from geo-
metries of Hydrogen-chains with 6 atoms each, to chains with 10
atoms each, transferring from Methane to Ethene, and transferring
from Ethene to Cyclobutadiene. These test systems are of interst,
because they show strong correlation, despite being relatively small
and computationally cheap systems. For example, even CCSD(T)
overestimates the energy barriers of the Ethene- and
Cyclobutadiene-PES by ≈10mHa13,31.

We compare our results to the earlier DeepErwin approach13,
which only partially reused weights, and GLOBE, a concurrent work26

which reuses all weights. To measure accuracy we compare two
important metrics: First, the mean energy error (averaged across all
geometries g of the test dataset) 1

N

P
g ðEg � Eref

g Þ, which reflects the
method’s accuracy for absolute energies (cf. Fig. 4a). Second, the
deviation of the relative energy between the highest and lowest point
of the PES, i.e. ΔE � ΔEref = ðEmax � EminÞ � ðEref

max � Eref
minÞ, plotted in

Fig. 4b. Since different studies use different batch-sizes and different

definitions of an epoch, we plot all results against the number of
samples used for the energy estimation during variational optimiza-
tion, which is very closely linked to computational cost.

Compared to other approaches, we find that our method yields
substantially lower and more consistent energies. On the toy pro-
blem of H6 to H10 our approach and GLOBE reach the same accu-
racy, while DeepErwin converges to higher energies. For the real-
world molecules Ethene (C2H4) and Cyclobutadiene (C4H4) our
approach reaches substantially lower (and thus more accurate)
energies andmuchmore consistent potential energy surfaces. After
64mio. fine-tuning samples, ourmean absolute energies are 16mHa
and 17 mHa lower than GLOBE, and our relative energies are 39mHa
and 20 mHa closer to the reference calculation. When inspecting
the resulting Potential Energy Surface for Ethene (Fig. 4c), we find
that we obtain qualitatively similar results as DeepErwin and MRCI,
but obtain energies that are ≈ 6 mHa lower (and thus more accu-
rate). GLOBE on the other hand does not yield the correct PES for
this electronically challenging problem, since it overestimates the
energy barrier at 90∘ twist angle by ≈50 mHa. We observe similar
results on the Cyclobutadiene geometries, where our approach
yields relative energies that are in close agreement to the reference
method, while the GLOBE-results overestimate the energy differ-
ence by ≈20mHa.

Towards a first foundation model for neural network
wavefunctions
While the experiments in the previous section demonstrate the
ability to pre-train our model and fine-tune it on a new system, the
resulting pre-trainedmodels are of little practical use, since they are
only pre-trained on a single compound each and can thus not be
expected to generalize to chemically different systems. To obtain a
more diverse pre-training dataset, we compiled a dataset of 360
distorted geometries, spread across 18 different compounds. The
dataset effectively enumerates all chemically plausible molecules
with up to 18 electrons containing the elements H, C, N, and O. For
details on the data generation see “"Dataset used for pre-training of
multi-compound model”. We pre-train a base-model for
500,000 steps on this diverse dataset and subsequently evaluate its
performance, when computing Potential Energy Surfaces. We
evaluate its error against CCSD(T) (extrapolated to the complete
basis set limit) both for compounds that were in the pre-training
dataset (with different geometries), as well as for new, larger, out-
of-distribution compounds which were not present in the pre-
training dataset. We compare the results against a baseline model,
which uses the same architecture, but is trained from scratch.
Instead of re-using the pre-trained weights, this baseline initializes
its weights using the default method of supervised HF-pre-training
for each specific molecule2.

Figure 5 shows that fine-tuning our pre-trained model yields
substantially lower energies than the usual optimization from a HF-
pre-trained model. For example, for new large compounds, it only
takes 1k fine-tuning steps of the pre-trained model, to reach the
same accuracy as CCSD(T) with a 3Z basis set. The non-pretrained
model has a 60x higher energy error after 1k optimization steps, and
requires 20x more steps to reach this accuracy. As expected, the
gains from pre-training diminish for long subsequent optimization,
but after 32k optimization steps, the pre-trained model still
demonstrates 3x lower energy errors than the model being trained
from scratch.

To assess the accuracy of our method for relative energies, we
use the pre-trained model to compute a potential energy surface
of a carbon dimer. Figure 6 compares our energies (with and and
without fine-tuning) against other state-of-the art conventional
and deep-learning-based methods. We compare against CCSD(T)
extrapolated to the complete basis-set limit, an FCI-QMC study of

Fig. 3 | Accuracy when Hartree-Fock-pre-training against rotated H2O mole-
cules, which contain a change of sign in the Hartree-Fock-p-orbitals of the
Oxygen atom (a). Comparing a shared optimization of a backflow-based neural
network wavefunction (Standard backflow) against transferable atomic orbitals
(Our work). a Hartree-Fock-pre-training loss of the last the last 100 Monte Carlo
samples for 20 rotated geometries (b): Mean energy error vs. couple cluster
reference calculations (ECCSD(T)), averaged across all geometries.
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the C2-dimer by Booth et al.32 and PsiFormer4, the currently most
accurate deep-learning based ansatz for absolute energies. We
find that our approach without any fine-tuning steps correctly
identifies the energy minimum at d = 2.35 bohr and even yields
equilibrium energies that are lower than FCIQMC (cf. Fig. 6a).
While the carbon dimer itself is not part of the pre-training dataset,
several molecules with C = C bonds are, which explains the rela-
tively high accuracy in this regime. When stretching the bond, our
zero-shot energies overestimate the resulting energy by roughly
250mHa (cf. Fig. 6b), clearly highlighting this failure case in a
regime of lacking pre-training data. However, after just 1k fine-
tuning steps of our pre-trained base-model, we obtain the quali-
tatively correct PES. In particular in the electronically most chal-
lenging regime around d = 3 bohr, FCIQMC and CCSD(T) both
systematically overestimate the relative energy by 20-30 mHa
compared to PsiFormer, wheres our method only overestimates
the energy by ca. 10mHa (cf. Fig. 6c). We note that our approach
uses only 1k optimization steps per geometry, compared to 100k
(and twice the batch size) for PsiFormer, thus requiring GPU-hours
instead of GPU-days.

Scaling behavior
In many domains, increasing the amount of pre-training, has led to
substantially better results, even without qualitative changes to the
architecture33. To investigate the scalability of our approach, we vary
the three key choices, along which one could increase the scale of pre-

training: The size of the wavefunction model, the number of com-
pounds and geometries present in the pre-training-dataset, and the
number of pre-training steps. Starting from a large model, trained on
18x20 geometries, for 256k pre-training steps, we independently vary
each parameter. We test 3 different architectures sizes, with decreas-
ing layer width and depth for the networks fθ, gθ, and GCNθ (Compu-
tational settings). We test 3 different training sets, with decreasing
number of compounds in the training set, with 20 geometries each
(Dataset used for pre-training of foundationmodel). Finally, we evalu-
ate model-checkpoints at different amounts of pre-training, ranging
from64k steps to 512k steps. Figure 7 depicts the accuracy obtainedby
subsequently fine-tuning the resulting model for just 4000 steps on
the evaluation set. In each case, increasing the scale of pre-training
clearly improves evaluation results—both for the small in-distribution
compounds, as well as the larger out-of-distribution compounds. We
find a strong dependence of the accuracy on the model size and
number of compounds in the pre-training dataset, and a weaker
dependency on the number of pre-training steps. While our compu-
tational resources, currently prohibit us from training at larger scale,
the results indicate that our approachmay already be sufficient to train
an accurate multi-compound, multi-geometry foundation model for
wavefunctions.

Discussion
This work presents an ansatz for deep-learning-based VMC, which
can in principle be applied to molecules of arbitrary size. We

Fig. 4 | Accuracywhenpre-training themodelonsmall compounds and reusing
it for larger compounds. Boxplots show the 25-75th percentile of energy devia-
tions, connecting lines showmeanenergy deviations, whiskers span the non-outlier
range (1.5 interquartile ranges above and below the boxes), energy deviations
beyond the whiskers are plotted individually. a Mean energy vs reference energy

Eref, averaged across all geometries of the test set. b Deviation of relative energies.
c Final Potential Energy Surface (PES) for the Ethenemolecule for eachmethod. For
the H-chains and C2H4 we use MRCI results from13 as reference energy, for Cyclo-
butadiene we use FermiNet results from16 as reference.
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demonstrate the favorable properties of our ansatz, such as
extensivity, zero-shot prediction of wavefunctions for similar
molecules (Size consistency of the ansatz), invariance to the phase
of orbitals (Equivariance with respect to HF-phase) and fast fine-
tuning for larger, new molecules (Transfer to larger, chemically
similar compounds). Most importantly, “Towards a first foundation
model for neuralnetwork wavefunctions” is, to our knowledge, the
first successful demonstration of a wavefunction, which is trans-
ferable across compounds and has successfully been trained on a
diverse dataset of compounds and geometries. We demonstrate
that the dominating deep-learning paradigm of the last years—pre-

training on large data and fine-tuning on specific problems—can also
be applied to the difficult problem of wavefunctions. While previous
attempts13,26 have failed to obtain high-accuracy energies from pre-
trained neural network wavefunctions, we find that our approach
yields accurate energies and does so at a fraction of the cost needed
without pre-training. A typical inference run (batch-size 2048, one
compute node with 2 GPUs) for amolecule with 3 heavy atoms takes
~30min for zero-shot evaluation, or 1.5h for 1k fine-tuning steps and
subsequent evaluation. A CCSD(T)-4Z calculation on a compute-
node with 128 CPUs took ~30min. Given that the per-iteration cost
of DL-VMC scales as Oðnel

4Þ vs. the Oðnel
7Þ cost of CCSD(T), we

expect our model to become competitive once pre-trained and
applied to sufficiently large molecules. We furthermore demon-
strate in “Scaling behavior” that results can be improved system-
atically by scaling up any aspect of the pre-training: Model size,
data-size, or pre-training-steps.

Despite these promising results, there are many open ques-
tions and limitations which should be addressed in future work.
First, we find that our ansatz currently does not fully match the
accuracy of state-of-the-art single-geometry DL-VMC ansätze. While
our approach consistently outperforms conventional variational
methods such as MRCI or CCSD at finite basis set, larger, compu-
tationally more expensive DL-VMC models can reach even lower
energies. For example, PsiFormer optimized for 100k steps on the
carbon dimer, reaches ≈20mHa lower absolute energies than our
approach fine-tuned for 1k steps. Exchanging our message-passing-
based electron-embedding, with recent attention based
approaches4 should lead to higher accuracy. Furthermore we have
made several deliberate design choices, which each trade-off
expressivity (and thus potentially accuracy) for computational
cost: We do not exchange information across orbitals and we base
our orbitals on computationally cheap HF-calculations. Including
attention or message passing across orbitals (e.g. similar to ref. 26),
and substituting HF for a trainable, deep-learning-based model
should further increase expressivity. While we currently use HF-
orbitals due to their widespread use and low computational cost,
our method does not rely on a specific orbital descriptor. We could
substitute HF for a separatemodel such as PhisNet20 or SchnOrb34 to
compute orbital descriptors cIk, leading to a fully end-to-end
machine-learned wavefunction. Second, while we include useful
physical priors such as locality, we do not yet currently use the
invariance of the Hamiltonian with respect to rotations, inversions
or spin-flip. E3-equivariant networks have been highly successful for
neural network force-fields, but have not yet been applied to

Fig. 5 | Fine-tuning of variationally pre-trained base-model (solid lines) vs.
training a model from scratch (dashed lines) for 70 different geometries.
Boxplots show the 25-75th percentile of energy deviations, connecting lines show
mean energy deviations, whiskers span the non-outlier range (1.5 interquartile
ranges above and below the boxes), energy deviations beyond the whiskers are
plotted individually. Small compounds are in-distribution, with geometries similar
to geometries in pre-training dataset. Larger compounds are out-of-distribution
and are not present in the pre-training dataset.

Fig. 6 | Potential energy surface ofC2. aAbsolute energies, (b) Energies of eachmethod relative to the energyminimumatd = 2.35 bohr, (c) Deviation of relative energies
from the relative energies obtained by PsiFormer (ψF).
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wavefunctions due to the hitherto unsolved problem of symmetry
breaking15. Using HF-orbitals as symmetry breakers, could open a
direct avenue towards E3-equivariant neural network wavefunc-
tions. Third, while we use locality of our orbitals as a useful prior, we
do not yet use it to reduce computational cost. By enforcing sparsity
of the localized HF-coefficients, one could limit the evaluation of
orbitals to a few participating atoms, instead of all atoms in the
molecule. While the concurrent GLOBE approach enforces its
orbitals to be localized at a single position, our approach naturally
lends itself to force localization at a given number of atoms,
allowing for a deliberate trade-off of accuracy vs. computational
cost. Lastly, we observe that our method performs substantially
better, when dedicating more computational resources to the pre-
training, which makes it likely that future work will be able to scale
up our approach. To facilitate this effort we open source our code,
dataset as well as model parameters.

Methods
Variational Monte Carlo
Considering the Born-Oppenheimer approximation, a molecule with
nel electrons and Natoms nuclei can be described by the time-
independent Schrödinger equation

Ĥψ= Eψ ð6Þ

with the Hamiltonian

Ĥ = � 1
2

X
i

∇2
ri
+
X
i>j

1
jri � rj j

+
X
I>J

Z IZ J

jRI � RJ j
�
X
i,I

Z I

jri � RI j

ð7Þ

By r= ðr1, . . . ,rn"
, . . . ,rnel

Þ 2 R3 ×nel we denote the set of electron
positions divided into n↑ spin-up and n↓ = nel − n↑ spin-down
electrons. The solution to the electronic Schrödinger equation ψ
needs to fulfill the anti-symmetry property, i.e. ψðPrÞ= � ψðrÞ for

any permutation P of two electrons of the same spin. Finding the
groundstate wavefunction of a system corresponds to finding the
solution to Eq. (6), with the lowest eigenvalue E0. Using the
Rayleigh-Ritz principle, an approximate solution can be found
through minimization of the loss

LðψθÞ=Er∼ψ2
θðrÞ

ðĤψθÞðrÞ
ψθðrÞ

" #
≥ E0, ð8Þ

using a parameterized trial wavefunction ψθ. The expectation value in
Eq. (8) is computed by drawing samples r from the unnormalized
probability distribution ψ2

θðrÞ using Markov Chain Monte Carlo
(MCMC). The application of the Hamiltonian to the wavefunction can
be computed using automatic differentiation and the loss isminimized
using gradient basedminimization. A full calculation typically consists
of three steps:

(i) Supervised HF-pre-training: Minimization of the difference
between the neural network ansatz and a reference wavefunc-
tion (e.g. a Hartree-Fock calculation) ∣∣ψθ − ψHF∣∣. This is the only
part of the procedure which requires reference data, and
ensures that the initial wavefunction roughly resembles the
true groundstate. While this step is in principle not required, it
substantially improves the stability of the subsequent varia-
tional optimization.

(ii) Variational optimization: Minimization of the energy (Eq. (8)) by
drawing samples from the wavefunction using MCMC, and opti-
mizing the parameters θ of the ansatz using gradient based
optimization.

(iii) Evaluation: Evaluation of the energy by evaluating Eq. (8) without
updating the parameters θ, to obtain unbiased estimates of the
energy.

To obtain a single wavefunction for a dataset of multiple geo-
metries or compounds, only minimal changes are required. During
supervised and variational optimization, for each gradient step we
pick one geometry from the dataset. We pick geometries either in a

Fig. 7 | Errorwhenfine-tuning thepre-trainedmodel for 4000stepsonsmall in-
distribution geometries and larger out-of-distribution geometries. Boxplots
show the 25-75th percentile of energy deviations, connecting lines show mean
energy deviations, whiskers span the non-outlier range (1.5 interquartile ranges
above and below the boxes), energy deviations beyond the whiskers are plotted
individually. a The energy error for increasing the model size of the transferable
atomic orbitals. The small model uses no hidden layers and no graph convolutional

network. Themedium-sizedmodel uses one hidden layer ofwidth 64 and 128 for gθ
and for fθ respectively, and one iteration of the graph convolutional network. The
large model uses two iterations of the graph convolutional network, fθ and gθ with
hidden dimension 256 and 128. b The energy error when using a pre-trainedmodel
on a dataset with either 3, 9 or 18 compounds. c The energy error with increasing
number of pretraining steps.
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round-robin fashion, or based on the last computed energy variance
for that geometry. We run the Metropolis Hastings algorithm35 for
that geometry to draw electron positions r and then evaluate
energies and gradients. For each geometry we keep a distinct set of
electron samples r.

Obtaining orbital descriptors from Hartree-Fock
As discussed in “A multi-compound wavefunction ansatz”, our
ansatz effectively maps uncorrelated, low-accuracy Hartree-Fock
orbitals, to correlated, high-accuracy neural network orbitals. The
first step in this approach is to obtain orbital descriptors ck for each
orbital k, based on a Hartree-Fock calculation.

The Hartree-Fock method uses a single determinant as ansatz,
composed of single-particle orbitals ϕHF

k :

ψHFðr1, . . . ,rnel
Þ= det ΦHF

ik

h i
i,k = 1...nel

ð9Þ

ΦHF
ik :=ϕHF

k ðriÞ ð10Þ

For molecules, these orbitals are typically expanded in atom-
centered basis-functions μ(r), withNbasis functions centered on each
atom I:

ϕHF
k ðrÞ=

XNatoms

I = 1

XNbasis

b= 1

αIk,b μbðr� RI Þ, ð11Þ

The coefficients αIk 2 RNbasis and the corresponding orbitals ϕHF
k ðrÞ

are obtained as solutions of an eigenvalue problem and are typically
delocalized, i.e. they have non-zero contributions from many
atoms. However, since det½UΦ�= det½U�det½Φ�, the wavefunction
is invariant under linear combination of orbitals by a matrix U with
det½U�= 1. One can thus choose localized orbital expansion
coefficients

eαIk,b =
XNorb

k0 = 1

αIk,bUkk0 ð12Þ

corresponding to orbitals which are maximally localized according to
some metric. We stress that such a transformation from canonical to
localized orbitals is lossless: The localized orbitals represent exactly
the same wavefunction as the canonical orbitals and thus the proce-
dure involves no approximation.We localize orbitals purely to simplify
the learning problem for the subsequent trainable functions f, and g,
which map orbital descriptors to backflows and exponents. If the
orbitals for typical molecules can be composed of recurring local
motives (which empirically holds true), this substantially simplifies the
generalization of f and g to larger molecules, since their inputs will
mostly consist of orbital coefficients already seen in smallermolecules.
Several different metrics and corresponding localization schemes,
such as Foster-Boys36 or Pipek-Mezey37, have been proposed to find the
optimal transformation matrix U and are easily available as computa-
tionally cheap post-processing options in quantum chemistry codes.
We use the Foster-Boys method as implemented in pySCF38.

Due to the fundamentally local nature of atom-wise orbital coef-
ficients eαIk , which can be insufficient to distinguish orbitals, we use a
fully connected graph convolutional neural network (GCN) to add
context about the surrounding atoms. We interpret each atom as a
node (with node features eαIk) and use the set of all 3D inter-atomic
distance vectors {RIJ} as edge features:

cIk =GCNθ,I feαJkgJ = 1...Natoms
,fRJJ0 g

� �
,

J,J0 = 1 . . .Natoms

We embed the edge features using a Kronecker product of Gaussian
basis functions (of means μ 2 RDedge and widths σ 2 RDedge ) of the
inter-atomic distance RIJ and the concatenation of the 3D-distance
vector with the constant 1. The embedded edge features are then
mapped to a high-dimensional feature space with a multi-layer
perceptron (MLP):

eeIJ = exp � ðRIJ � μÞ2
2σ2

 !
� 1jRIJ

� � ð13Þ

eIJ = MLP ðeeIJÞ ð14Þ

c0Ik = eαIkeeIJ 2 R4Dedge , c0Ik 2 RNbasis
ð15Þ

Each layer l of the GCN consist of the following update rules

ul
Ik =

X
J

clJk � We
leIJ

� �
, ð16Þ

cl + 1Ik = σ Wc
lclIk +Wu

lul
Ik

� �
, ð17Þ

with trainable weight matrices We
l , Wc

l , Wu
l and the SiLU activation

function σ39. After L iterations we use the final outputs as orbitals
features:

cIk := cLIk ð18Þ

Mapping orbital descriptors to wavefunctions
To obtain entries Φik of the Slater determinant, we combine a high-
dimensional electron embedding hi with a function of the orbital
descriptor cIk:

hi =hθðri,fr"g,fr#g,fðR,ZÞgÞ ð19Þ

φd
θ ðri,RI ,cIkÞ= exp �jri � RI j ge,d

θ ðcIkÞ
� �

ð20Þ

Φd
ik =

XNatoms

I = 1

φd
θ ðri,RI ,cIkÞ fo,dθ ðcIkÞ,hi

D E
ð21Þ

The functions GCNo
θ , f

o
θ , and ge

θ are trainable functions, which are
enforced to be odd and even with respect to change in sign of their
argument c:

Even ge
θ :

ge
θðcÞ := gθðcÞ+ gθð�cÞ ð22Þ

Odd foθ :

foθðcÞ := fθðcÞ � fθð�cÞ ð23Þ

Odd GCNo
θ :

GCNo
θðα,RÞ :=GCNθðα,RÞ � GCNθð�α,RÞ ð24Þ

To obtain electron embeddings hi we use the message-passing
architecture outlined in5, which is invariant with respect to permuta-
tionof electrons of the same spin, or thepermutationof ions.Note that
during training, all samples in a batch come from the same geometry,
and thus have the same values for R, Z, and eα. While the embedding
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network hembed
θ , needs to be re-evaluated for every sample, the

networks GCNθ, fθ, and gθ only need to be evaluated once per batch,
substantially reducing their impact on computational cost.

Dataset used for pre-training of multi-compound model
We use RDKit40 to generate all valid SMILES of molecules contain-
ing 1-3 atoms of the elements C, N, O. For each bond between atoms
we allow single, double, and triple bonds. After saturating the
molecules with Hydrogen, we perform force-field based geometry
relaxation using RDKit. We obtain 18 compounds with 10-18 elec-
trons, which we use for pre-training (cf. Fig. 8) and 35 compounds
with 20-24 electrons, of which we use some for evaluation. Con-
trary to other datasets of small molecules such as GDB-7, our
dataset also includes compounds which do not contain Carbon,
such as the nitrogen dimer N2 or hydrogen peroxide H2O2. To
obtain a more diverse dataset we perturb each equilibrium geo-
metry by applying Gaussian noise to the 3D coordinates. Since this
can generate nonphysical geometries, we keep only geometries in
which the perturbed inter-atomic distances are between 90–140%
of the unperturbed distances.

Reference energies
Reference energies for H2O in Fig. 3 were computed using DL-VMC
for 100,000 steps5. Reference energies for H10 and C2H4 in Fig. 4
were computed using MRCI-F12(Q)13. Reference energies for C4H4

in Fig. 4 were computed using DL-VMC16. To compute reference
energies for our multi-compound dastaset used in Fig. 5 and Fig. 7,
we used pySCF38 to perform CCSD(T) calculations using the cc-

pCVXZ basis sets. We computed Hartree-Fock energies EHFX using

basis-sets of valence X = {2, 3, 4} and CCSD(T) energies ECCSDðTÞ
X

using valence X = {2, 3}. To extrapolate to the complete-basis-set-

limit, we followed2 and fitted the following functions with free

parameters EHF
CBS ,E

corr
CBS ,a,b,c:

EHF
X = EHF

CBS +ae�bX

Ecorr
X : = EHF

X � ECCSDðTÞ
X = Ecorr

CBS + cX
�3

ECCSDðTÞ
CBS = EHF

CBS + Ecorr
CBS

We note that neither CCSD itself, nor the perturbative (T) treatment,
nor the CBS extrapolation are variational methods. The computed
reference energies are therefore not variational and may under-
estimate the true groundstate energy.

Computational settings
For a more detailed summary and explanation of the high-
dimensional embedding structure we refer to the original work5.
In all experiments we relied on the second order optimizer
K-FAC41,42. Key hyperparameters used in this work are summarized
in Table 1. For the base model in “Towards a first foundation model
for neural network wavefunctions” we increased the initial damp-
ing by 10x and ramped it down to 1 × 10−3 with an inverse scheduler.
All runs reusing pre-trained weights, offset the learning rate sche-
duler by o = 32, 000 steps, i.e. lr(t) = lr0(1+(t+o)/6000)−1. This leads
to a 5x lower initial learning rate. All pre-training runs in “Transfer
to larger, chemically similar compounds“ used 64, 000 optimiza-
tion steps. The base model in “Towards a first foundationmodel for
neural network wavefunctions” used 512, 000 optimization steps
due to the larger and more diverse training corpus.

The small- and medium-sized model for our ablation study in
Fig. 7 differ from the large model by the number of hidden layers
for fθ and gθ, the number of neurons per layer, and the number of
iterations of the GCNθ: The small model uses no hidden layers and

a) Training set

b) In-distribution test set c) Out-of-distribution test test

Small dataset Medium dataset

Fig. 8 | Compounds used for pre-training and evaluation of our model. Atom
colors follow theusual conventionofH =white,C = gray,N = blue,O = red.aThe full
training set, containing 18 compounds, each with 20 randomly distorted geome-
tries. The small and medium sized training sets are subsets of this full training set,

containing 3 and 9 compounds respectively. b The in-distribution test set consists
of 3 compounds with 10 distorted geometries each. c The out-of-distribution test
set consists of 4 compounds with 10 distortions each.
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no graph convolutional network. The medium-sized model uses
one hidden layer of width 64 for gθ and 128 for fθ, and one iteration
of the graph convolutional network. The small, medium and large
models respectively have 0.8 mio, 1.2 mio. and 2.0 mio
parameters.

Data availability
All geometry- and energy-data is available on GitHub under https://
github.com/mdsunivie/deeperwin. Model weights are available on
figshare under https://doi.org/10.6084/m9.figshare.23585358.
v143. Source data are provided with this paper.

Code availability
All code is available on GitHub under https://github.com/mdsunivie/
deeperwin and Zenodo (https://doi.org/10.5281/zenodo.10081846)44.

References
1. Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of

the electronic Schrödinger equation. Nat. Chem. 12,
891–897 (2020).

2. Pfau, D., Spencer, J. S., Matthews, A. G. D. G. & Foulkes, W. M. C. Ab
initio solution of the many-electron Schrödinger equation with
deep neural networks. Phys. Rev. Res. 2, 033429 (2020).

3. Spencer, J. S., Pfau, D., Botev, A. & Foulkes, W. M. C. Better, faster
fermionic neural networks. arXiv https://doi.org/10.48550/arXiv.
2011.07125 (2020).

4. von Glehn, I., Spencer, J. S. & Pfau, D. A self-attention ansatz for ab-
initio quantum chemistry. In The Eleventh International Conference
on Learning Representations 10853–10892 (ICLR, 2023).

5. Gerard, L., Scherbela,M.,Marquetand, P. &Grohs, P. Gold-standard
solutions to the Schrödinger equation using deep learning: How
much physics do we need? In Advances in Neural Information
Processing Systems 10282–10294 (NeurIPS, 2022).

6. Towards the ground state ofmolecules via diffusionmonte carlo on
neural networks. Nat. Commun.14, 1860 (2023).

7. Wilson, M., Gao, N., Wudarski, F., Rieffel, E. & Tubman, N. M.
Simulations of state-of-the-art fermionic neural network wave
functions with diffusion Monte Carlo. arXiv https://doi.org/10.
48550/arXiv.2011.07125 (2021).

8. Cassella, G. et al. Discovering quantum phase transitions with fer-
mionic neural networks. Phys. Rev. Lett. 130, 036401 (2023).

9. Wilson, M. et al. Neural network ansatz for periodic wave functions
and the homogeneous electron gas. Phys. Rev. B 107,
235139 (2023).

10. Li, X., Li, Z. & Chen, J. Ab initio calculation of real solids via neural
network ansatz. Nat. Commun. 13, 7895 (2022).

11. Han, J., Zhang, L. & E, W. Solving many-electron Schrödinger
equation using deep neural networks. J. Comput. Phys. 399,
108929 (2019).

12. Qian, Y., Fu, W., Ren, W. & Chen, J. Interatomic force from neural
networkbased variational quantumMonteCarlo. J. Chem. Phys.157,
164104 (2022).

13. Scherbela, M., Reisenhofer, R., Gerard, L., Marquetand, P. & Grohs,
P. Solving the electronic Schrödinger equation for multiple nuclear
geometries with weight-sharing deep neural networks. Nat. Com-
put. Sci. 2, 331–341 (2022).

14. Entwistle, M. T., Schätzle, Z., Erdman, P. A., Hermann, J. & Noé, F.
Electronic excited states in deep variational Monte Carlo. Nat.
Commun. 14, 274 (2023).

15. Gao, N. & Günnemann, S. Ab-initio potential energy surfaces by
pairing GNNs with neural wave functions. In International Con-
ference on Learning Representations 10259–10281 (ICLR, 2022).

16. Gao, N. & Günnemann, S. Sampling-free inference for ab-initio
potential energy surface networks. In The Eleventh International
ConferenceonLearningRepresentations 10896–10965 (ICLR, 2023).

17. Carleo, G. & Troyer, M. Solving the quantum many-body problem
with artificial neural networks. Science 355, 602–606 (2017).

18. Kochkov, D. & Clark, B. K. Variational optimization in the AI era:
computational graph states and supervised wave-function optimi-
zation. arXiv https://doi.org/10.48550/arXiv.2011.07125 (2018).

19. Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-R. & Maurer,
R. J. Unifyingmachine learning and quantumchemistry with a deep
neural network for molecular wavefunctions. Nat. Commun. 10,
5024 (2019).

20. Unke, O. et al. SE(3)-equivariant prediction of molecular wave-
functions and electronic densities. In Advances in Neural
Information Processing Systems 14434–14447 (NeurIPS, 2021).

21. Batatia, I. et al. The design space of E(3)-equivariant atom-centered
interatomic potentials. arXiv https://doi.org/10.48550/arXiv.2205.
06643 (2022).

22. Brown, T. et al. Languagemodels are few-shot learners. InAdvances
in Neural Information Processing Systems. (eds. Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) 1877–1901
(NeurIPS, 2020).

Table 1 | Hyperparameter settings used in this work

HF-pre-training Pre-training basis set 6-31G + p-functions for H

Pre-training steps per
geometry

100-500

Embedding Hidden dimension of hi 256

Dimension of SchNet
convolution

32

No iterations embedding 4

Activation function tanh

Transferable atomic
orbitals

No determinants Ndet 4

Basis set 6-31G + p-functions for H

No hidden layers fθ 2

Hidden dimension of fθ 256

No hidden layers gθ 2

No hidden dimension gθ 128

No iterations GCN 2

No Gaussian basis
functions

16

Hidden edge embedding
dimension Dedge

32

Hidden node embed-
ding dim.

16

Activation function SiLU

Markov Chain
Monte Carlo

No walkers 2048

No decorrelation steps 20

Target acceptance prob. 50%

Variational pre-
training

Optimizer KFAC

Damping 1 × 10−3

Norm constraint 3 × 10−3

Batch size 2048

Initial learning rate lr0 0.1

Learning rate decay lr(t) = lr0(1+t/6000)
−1

Optimization steps 64,000–512,000

Changes for fine-
tuning

Learning rate decay lr(t) = lr0(7+t/6000)
−1

Optimization steps 0–32,000

Article https://doi.org/10.1038/s41467-023-44216-9

Nature Communications |          (2024) 15:120 11



23. Radford, A. et al. Learning transferable visual models from natural
language supervision. In Meila, M. & Zhang, T. (eds.) Proceedings of
the 38th International Conference on Machine Learning Research
8748–8763 (PMLR, 2021).

24. Yuan, L. et al. Florence: A new foundation model for computer
vision. arXiv https://doi.org/10.48550/arXiv.2011.07125 (2021).

25. Zhang, Y.-H. & Di Ventra, M. Transformer quantum state: a multi-
purpose model for quantum many-body problems. Phys. Rev. B
107, 075147 (2023).

26. Gao, N. & Günnemann, S. Generalizing neural wave functions. In
Krause, A. et al. (eds.) Proceedings of the 40th International Con-
ference on Machine Learning, vol. 202 of Proceedings of Machine
Learning Research 10708–10726 (PMLR, 2023).

27. Behler, J. & Parrinello, M. Generalized neural-network representa-
tion of high-dimensional potential-energy surfaces. Phys. Rev. Lett.
98, 146401 (2007).

28. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian
approximation potentials: the accuracy of quantum mechanics,
without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

29. Motta, M. et al. Towards the solution of the many-electron problem
in real materials: equation of state of the hydrogen chain with state-
of-the-art many-body methods. Phys. Rev. X 7, 031059 (2017).

30. Westermayr, J. &Marquetand, P.Machine learning for electronically
excited states of molecules. Chem. Rev. 121, 9873–9926
(2021).

31. Lyakh, D. I., Musiał, M., Lotrich, V. F. & Bartlett, R. J. Multireference
nature of chemistry: The coupled-cluster view. Chemical Reviews
112, 182–243 (2012).

32. Booth, G. H., Cleland, D., Thom, A. J. W. & Alavi, A. Breaking the
carbon dimer: The challenges of multiple bond dissociation with
full configuration interaction quantum Monte Carlo methods.
J. Chem. Phys. 135, 084104 (2011).

33. Hoffmann, J. et al. An empirical analysis of compute-optimal large
language model training. In Advances in Neural Information
Processing Systems (eds. Koyejo, S. et al.) 30016–30030
(NeurIPS, 2022).

34. Gastegger, M., McSloy, A., Luya, M., Schütt, K. T. & Maurer, R. J. A
deep neural network for molecular wave functions in quasi-atomic
minimal basis representation. J. Chem. Phys. 153, 044123 (2020).

35. Hastings, W. K. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57, 97–109 (1970).

36. Foster, J. M. & Boys, S. F. Canonical configurational interaction
procedure. Rev. Mod. Phys. 32, 300–302 (1960).

37. Pipek, J. & Mezey, P. G. A fast intrinsic localization procedure
applicable for ab initio and semiempirical linear combination of
atomic orbital wave functions. J. Chem. Phys. 90,
4916–4926 (1989).

38. Sun, Q. et al. Recent developments in the PySCF programpackage.
J. Chem. Phys.153, 024109 (2020).

39. Elfwing, S., Uchibe, E. & Doya, K. Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning.
arXiv https://doi.org/10.48550/arXiv.2011.07125 (2017)

40. Landrum, G. Rdkit: Open-Source Cheminformatics https://github.
com/rdkit/rdkit (2009).

41. Martens, J. &Grosse, R. Optimizing neural networkswith kronecker-
factored approximate curvature. In International Conference on
Machine Learning, 2408–2417 (PMLR, 2015).

42. Botev, A. & Martens, J. KFAC-JAX http://github.com/deepmind/
kfac-jax (2022).

43. Gerard, L., Scherbela, M. & Grohs, P. Pre-Trained Neural Wave-
function Checkpoints for the GitHub Codebase DeepErwin https://

figshare.com/articles/online_resource/Pre-trained_neural_
wavefunction_checkpoints_for_the_GitHub_codebase_DeepErwin/
23585358 (2023).

44. Scherbela,M., Gerard, L.&Grohs, P.Deeperwinhttps://github.com/
mdsunivie/deeperwin/blob/master/README.md (2023).

Acknowledgements
We gratefully acknowledge financial support from the following grants:
Austrian Science Fund FWFProject I 3403 (P.G.),WWTF-ICT19-041 (L.G.).
The computational results have been achieved using the Vienna Scien-
tific Cluster (VSC). The funders had no role in study design, data col-
lection and analysis, decision to publish or preparation of the
manuscript. Additionally,we thankNicholasGao for providinghis results
and data, Ruard van Workum for initial work on the python imple-
mentation for multi-compound optimization and Jan Hermann for fruit-
ful discussions.

Author contributions
M.S., L.G., and P.G. conceived the overall idea. M.S. conceived and
implemented the ansatz, built the dataset and designed the experi-
ments. L.G. gave input on the ansatz and worked on implementation.
M.S. and L.G. performed the experiments. M.S. and L.G. wrote the
manuscript with input, supervision and funding from P.G.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-44216-9.

Correspondence and requests for materials should be addressed to
Philipp Grohs.

Peer review informationNatureCommunications thanksGero Friesecke
and the other, anonymous, reviewers for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-023-44216-9

Nature Communications |          (2024) 15:120 12



Variational Monte Carlo on a Budget –
Fine-tuning pre-trained Neural Wavefunctions

Michael Scherbela∗
University of Vienna

michael.scherbela@univie.ac.at

Leon Gerard*

University of Vienna
leon.gerard@univie.ac.at

Philipp Grohs
University of Vienna

philipp.grohs@univie.ac.at

Abstract

Obtaining accurate solutions to the Schrödinger equation is the key challenge
in computational quantum chemistry. Deep-learning-based Variational Monte
Carlo (DL-VMC) has recently outperformed conventional approaches in terms
of accuracy, but only at large computational cost. Whereas in many domains
models are trained once and subsequently applied for inference, accurate DL-VMC
so far requires a full optimization for every new problem instance, consuming
thousands of GPUhs even for small molecules. We instead propose a DL-VMC
model which has been pre-trained using self-supervised wavefunction optimization
on a large and chemically diverse set of molecules. Applying this model to new
molecules without any optimization, yields wavefunctions and absolute energies
that outperform established methods such as CCSD(T)-2Z. To obtain accurate
relative energies, only few fine-tuning steps of this base model are required. We
accomplish this with a fully end-to-end machine-learned model, consisting of
an improved geometry embedding architecture and an existing SE(3)-equivariant
model to represent molecular orbitals. Combining this architecture with continuous
sampling of geometries, we improve zero-shot accuracy by two orders of magnitude
compared to the state of the art. We extensively evaluate the accuracy, scalability
and limitations of our base model on a wide variety of test systems.

1 Introduction

Solving the Schrödinger equation is of utmost importance for the prediction of quantum chemical
properties in chemistry. The time-independent Schrödinger equation in the Born-Oppenheimer
approximation [1] for a molecule with Nnuc nuclei and nel electrons is an eigenvalue problem with
Hamiltonian H:

Hψ = Eψ, H = −1

2

∑

i

∇2
ri

+
∑

i>j

1

rij
+
∑

I>J

ZIZJ
RIJ

−
∑

i,I

ZI
riI

. (1)

By R = (R1, . . . ,RNnuc) ∈ RNnuc×3 and Z = (Z1, . . . , ZNnuc) ∈ NNnuc we denote the nuclear
positions and charges. The electron positions are denoted by r = (r1, . . . , rn↑ , . . . , rnel) ∈ Rnel×3

with n↑ spin-up electrons and n↓ spin-down electrons. The inter-particle difference and distance
vectors are written as RIJ = RI −RJ , RIJ = |RIJ |, riI = ri −RI , riI = |riI |, rij = ri − rj
and rij = |rij | with I, J = 1, . . . , Nnuc and i, j = 1, . . . , nel. The eigenvalues E of Eq. 1 represent
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the energy states of a molecule, whereas a special interest lies in finding the smallest eigenvalue E0,
called the ground-state energy. The corresponding high-dimensional wavefunction ψ : Rnel×3 → R
can be found via the Rayleigh-Ritz principle, by minimizing

L(ψθ) = Er∼ψ2
θ(r)

[
Hψθ(r)

ψθ(r)

]
≥ E0. (2)

Due to electrons being fermions, the solution must fulfill the anti-symmetry property, stating that
the sign of the wavefunction must change for any permutation P of two electrons of the same spin:
ψ(r) = −ψ(Pr). Having access to the solution ψ, allows in principle a complete description of the
considered molecule. Unfortunately, only for one electron systems there exists an analytical solution
and due to the curse of dimensionality, with increasing number of particles, obtaining an accurate
approximation of the wavefunction becomes intractable already for medium-sized molecules. This is
because many high-accuracy approximation methods scale poorly with nel. For example CCSD(T) –
coupled cluster with its single-, double-, and perturbative triple-excitations variant – is considered the
gold-standard reference in computational chemistry, but its computational cost scales as O(nel

7) [2].
Deep-learning-based Variational Monte Carlo (DL-VMC) has emerged as a promising alternative
solution. A single step scales as O(nel

4) and it has surpassed the accuracy of many conventional
methods such as CCSD(T), when applied to small molecules [3]. In DL-VMC, the wavefunction is
represented by a neural network with trainable parameters θ and optimized via Eq. 2 using gradient
based optimization. Since the expectation value of Eq. 2 cannot be computed analytically, it is
approximated by sampling the electron positions during optimization and evaluation with Monte
Carlo methods like Metropolis-Hastings [4].

Related work FermiNet by Pfau et al. [3] and its variants have emerged as the leading architecture
for DL-VMC in first quantization. It can reach highly accurate energies, but typically requires tens
of thousands of optimization steps for convergence. Many improvements have been proposed to
further increase accuracy [5–7] and accelerate convergence [8]. Furthermore, DL-VMC has been
extended to properties beyond energies [9–11] and systems beyond molecules [12–16]. Despite
the favorable scaling of DL-VMC, computational cost is still high, even for small molecules, often
requiring thousands of GPUhs to find ψ for a single small molecule [17]. This is because unlike
typical machine learning applications – which train an expensive model once, and subsequently
achieve cheap inference – in DL-VMC the minimization of Eq. 2 is typically done from scratch for
every new system.

A promising line of research to scale-up expensive ab-initio solvers such as DL-VMC or CCSD(T)
has been to develop proxy methods, which can be trained on outputs of ab-initio methods to directly
predict molecular properties [18, 19] or wavefunctions [20, 21] from the molecular geometry. While
these proxy methods can often reproduce the underlying ab-initio method with high fidelity and scale
to millions of atoms [22], they are fundamentally limited by the accuracy of their reference method
and need many high-accuracy samples for training, reiterating the need for scaleable, high-accuracy
reference methods.

To enable DL-VMC methods to efficiently compute wavefunctions for many molecules, several
methods have been proposed to amortize the cost of optimization, by learning a single wavefunction
across multiple systems. This has been demonstrated to work for different geometries of a single
molecule [10, 23, 24], and recently two approaches have been proposed to learn wavefunctions across
entirely different molecules, each with their own limitations. Gao et al. [17] reparameterized the
orbitals of a wavefunction, by using chemistry-inspired heuristics to determine orbital positions,
managing to efficiently generalize wavefunctions across different geometries of a single molecule.
However, when learning a single wavefunction across different molecules, their results deteriorated
and transfer to new molecules proved difficult. Scherbela et al. [25] do not require heuristic orbital
positions, but instead use orbital descriptors of a low-accuracy conventional method to parameterize
DL-VMC orbitals. However, while their wavefunction ansatz successfully transfers to new molecules,
their method requires a separate, iterative Hartree-Fock (HF) calculation for every new geometry.

Our contribution This work presents the first end-to-end machine learning approach, which
successfully learns a single wavefunction across many different molecules with high accuracy. Our
contributions are:
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• A transferable neural wavefunctions, which requires neither heuristic orbital positions, nor
iterative HF calculations. We achieve this by building on the architecture by Scherbela et al.
[25] and an orbital prediction model by Unke et al. [20].

• A simplified and improved electron embedding architecture, leveraging expressive nuclear
features from our orbital prediction model and a message passing step between nuclei.

• A chemically diverse dataset with up to 100 molecules based on QM7-X [26], a data
augmentation method based on normal mode distortions, and successful training of a neural
wavefunction on these with continuously sampled geometries. Additionally, we improve the
initialization of electrons around the molecule, reducing the computational overhead.

• As a final result, an accurate neural wavefunction, which shows for the first time zero-shot
capabilities, i.e. high-accuracy energy predictions without additional optimization steps,
on new systems. In particular it achieves better absolute energies than well established,
high-accuracy gold-standard reference methods, such as CCSD(T)-3Z on unseen systems
without any finetuning (cf. Fig. 2a).

Overview of the paper In Sec. 2 we outline our method and the procedure to optimize a trans-
ferable wavefunction across molecules. In Sec. 3 we thoroughly test the accuracy of our obtained
wavefunction, by analyzing absolute energies (Sec. 3.1), relative energies (Sec. 3.2), and the impact
of design choices in an ablation study (Sec. 3.3). Throughout this work, we compare against other
high-accuracy methods, in particular results obtained by state-of-the-art DL-VMC methods and
CCSD(T). Finally we analyze the scalability and limitations of our base model, by applying it to a
large-scale dataset in Sec. 3.4, before a discussion and outlook for future research in Sec. 4.

2 Methods

Our approach is divided into two parts (cf. Fig. 1): On the one hand, a wavefunction ansatz,
containing an electron embedding, orbital embedding and a Slater determinant. On the other hand a
method for geometry sampling based on normal-mode distortions.

2.1 Our wavefunction ansatz

PhisNet
R

Z
orbital
coeffs

electron
embeddings

orbital
embeddings

E

nuclear embedding

nuc. feat.

r

orbital
emb. net

nuclear
GNN

electron
emb. net

Slater
Det.

Hamil-
tonian

energy estimate
normal

distributionhessian estimate

electron model

orbital model

wavefunction model

pretrained, then frozen

fixed

trainable

Figure 1: Overview of our approach: Wavefunction ansatz (top) and geometry sampling (bottom)

A single forward-pass for our wavefunction model

ψ =

Ndet∑

d=1

det
[
ϕdk(x

el
i )
]
, ϕdk(x

el
i ) =

Nnuc∑

I=1

⟨xel
i ,f

orb
Ikd⟩e−riIg

orb
Ikd , i, k = 1, . . . , nel (3)

can again be divided into three blocks: An electron model acting on nuclear and electron coordinates,
generating electron embeddings xel; an SE(3)-equivariant orbital model acting only on nuclear
coordinates, generating orbital embeddings gorb and f orb; a Slater determinant combining electron-
and orbital-embeddings, and ensuring anti-symmetry of the wavefunction.
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Message passing neural network Throughout this work we use message passing neural networks
(MPNN), to operate on the graph of particles which are connected by edges containing information
about their relative positions. The electron-electron, electron-nuclear and nuclear-nuclear edges are
embedded with a multi-layer perceptron (MLP),

eel-el
ij = MLP

(
[rij , rij ]

)
eel-nuc
iI = MLP

(
[riI , riI ]

)
enuc-nuc
IJ = MLP

(
[RIJ , RIJ ]

)
, (4)

by using a concatenation ([·]) of distance and difference vectors, and separate weights for each MLP.
A single message passing step is decomposed into the following operations

ãrec
i = MessagePassing(arec

i , {asend
j }, {eij}) (5)

= σ

(
Linear(arec

i ) + Linear
(∑

j

Linear(asend
j )⊙ Linear(eij)

))
(6)

for a receiving particle ãrec
i and the set of sending particles {asend

j }, connected via their edges {eij}.
By σ we denote the non-linear activation and with ⊙ the element-wise multiplication along the
feature dimension. An MPNN is obtained by stacking MessagePassing layers

MPNN(ai, {aj}, {eij}) = MessagePassing(. . .MessagePassing(ai, {aj}, {eij})) (7)

In the following we use these message passing steps to model all inter-particle interactions.

SE(3)-equivariant orbital model The orbital model is a simplified version of PhisNet[20], a neural
network predicting the overlap matrix S and the Fock matrix F , via nuclear embeddings xnuc:

xnuc = phisnetθ(R,Z) SIJ = sθ(x
nuc
I ,xnuc

J ) F IJ = fθ(x
nuc
I ,xnuc

J ). (8)

Here xnuc ∈ RNnuc×(L+1)2×Nchannels , and SIJ and F IJ are each in RNbasis×Nbasis . The basis-set size
of the predicted orbitals is denoted by Nbasis and the feature dimension of the nuclear embeddings
by Nchannels. The full overlap- and Fock-matrices are assembled from the corresponding blocks
SIJ and F IJ , leading to matrices of shape [NnucNbasis ×NnucNbasis]. Each layer of PhisNet is
SE(3)-equivariant, ensuring that any 3D-rotation or inversion of the input coordinates R, leads to an
equivalent rotation of its outputs. This is done by splitting any feature vector into representations of
varying harmonic degree l = 0, . . . , L, each with components m = −l, . . . , l. A detailed description
of SE3-equivariant networks in general, as well as PhisNet in particular can be found in [20]. A list
of changes and simplifications we made to PhisNet can be found in Appendix C.

The orbital embeddings (corresponding to orbital expansion coefficients in a conventional quantum
chemistry calculation) are obtained by solving the generalized eigenvalue problem:

FCk = SCkϵk x̂orb
Ik = reshape(Ck, [Nnuc, Nbasis])I (9)

It has been shown empirically that it is beneficial to obtain the orbital coefficients x̂orb
Ik as solutions

to this generalized eigenvalue problem, rather than predicting them directly [27] as functions of R
and Z. This is because the orbital coefficients are neither unique, nor do they share the molecule’s
symmetry. The matrices F and S on the other hand are unique and transform equivariantly under
E(3)-transformations of the molecule, leading to a well defined learning problem.

Following [25], we do not use the orbital energies ϵk and obtain the backflow factors f and exponents
g, by first localizing the resulting orbitals using the Foster-Boys localization [28] (cf. Appendix B)
and subsequently using an MPNN and MLP acting on the orbital embeddings.

x̃orb
Ik =

Norb∑

n=1

U loc.
kn x̂

orb
In, xorb

Ik = MPNN(x̃orb
Ik , {x̃orb

Jk}, {enuc-nuc
IJ }) (10)

f orb
Ik = MLP(xorb

Ik ), f orb
Ik ∈ RNnuc×Norb×Ndet×Nemb (11)

gorb
Ik = MLP(xorb

Ik ), gorb ∈ RNnuc×Norb×Ndet (12)

Electron model The electron embedding is a message passing neural network. To incorporate
the geometric information of the molecule considered, we leverage the equivariant prediction of the
PhisNet nuclear embeddings xnuc, by first performing a message passing step between the nuclear
embeddings

x̂nuc
I = MLP(xnuc

I ) x̃nuc
I = MessagePassing(x̂nuc

I , {x̂nuc
J }, {enuc-nuc

IJ })
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and then using these features to initialize the electron embeddings

xel,0
i = MessagePassing(0, {x̃nuc

J }, {eel-nuc
iJ }),

by using a zero vector 0 for the initial receiving electrons. This differentiates our electron model
from previously proposed methods [3, 6, 8], leading to a better generalization when optimized across
molecules (cf. Sec. 3.3). The final step of the embedding is a multi-iteration message passing between
electron embeddings to capture the necessary electron-electron interaction

xel
i = MPNN(xel,0

i , {xel,0
j }, {eel-el

ij }),

resulting in a Nemb-dimensional representation for each electron xel
i ∈ RNemb , i = 1, . . . , nel.

Overall E(3)-equivariance Like existing approaches [3, 8, 17] our overall wavefunction does not
enforce E(3)-symmetry. This is because the wavefunction can have lower symmetry than the molecule
[23], for example in the case of the excited states of a hydrogen atom. We therfore choose all parts of
the network that act purely on nuclear coordinates (i.e. the PhisNet model and the energy/hessian
estimate) to be equivariant under E(3)-transformations. All parts of the network acting on electron
coordinates (in particular the electron model) break this symmetry by depending explicitly on the
cartesian coordinates of the electrons. The architecture is thus only invariant under translations, but
not under rotations or inversions. We bias the model towards approximately invariant energies using
data augmentation as discussed in Sec. 2.3.

2.2 Sampling

Markov Chain Monte Carlo (MCMC) sampling of electron positions We use MCMC to draw
samples r from the probability distribution ψ(r)2, to evaluate the expectation value of Eq. 2. One
notable difference compared to other works is our initialization r0 of the Markov Chain. In the limit of
infinite steps, the samples are distributed according to ψ2, but for a finite number of steps the obtained
samples strongly depend on r0. This issue is typically addressed by a "burn-in", where MCMC is
run for a fixed number of steps (without using the resulting samples) to ensure that r has diffused
to state of high probability. Previous work has initialized r0 using a Gaussian distribution of the
electrons around the nuclei. We find that this initialization is far from the desired distribution ψ2 and
thus requires ≈ 105 MCMC steps to reach the equilibrium distribution. We instead initialize r0 by
samples drawn from an exponential distribution around the nuclei, which much better approximates
the correct distribution and thus equilibrates substantially faster (cf. Appendix A). We find that
exponential initialization reduces the required number of burn-in steps by ca. 50%, reducing the
computational cost of a 500-step zero- shot evaluation by ca. 5%.

Normal mode sampling of geometries Since DL-VMC is an ab-initio method, we do not require a
labeled dataset of reference energies, but to obtain a transferable wavefunction, which generalized
well to new systems, a diverse dataset of molecular geometries R is required. Starting with an initial
set of geometries R0, we update R on the fly, by perturbing each geometry every 20 optimization
steps by adding random noise ∆R to the nuclear coordinates. Using uncorrelated, isotropic random
noise for ∆R would yield many non-physical geometries R′, since the stiffness of different degrees
of freedom can vary by orders of magnitude. Intuitively we want to make large perturbations along
directions in which the energy changes slowly, and vice-versa. We achieve this by sampling ∆R
from a correlated normal distribution

∆R ∼ N (α(R0 −R), βH−1
phis) R′ = R+∆R. (13)

The bias term α(R0 −R) ensures that geometries stay sufficiently close to their starting point R0.
The covariance matrix is chosen proportional to the pseudo-inverse of the hessian of the energy Ephis,
which is predicted from the scalar component of the nuclear embeddings using a pre-trained MLP.
By using H−1

phis as covariance matrix, we take large steps along soft directions and small steps along
stiff directions, thus avoiding unphysical geometries with very high energies.

Ephis =

Nnuc∑

I=1

MLP(xnuc
I ), Hphis

Iζ,Jξ =
∂2Ephis

∂RIζ∂RJξ
, I, J = 1 . . . Nnuc ζ, ξ = 1 . . . 3 (14)

5



After distorting the nuclear coordinates R, we also adjust the electron positions r, using the space-
warp coordinate transform described in [29], which effectively shifts the electrons by a weighted
average of the shift of their neighbouring nuclei. In addition to this distortion of the molecule, we
also apply a random global rotation to all coordinates, to obtain a more diverse dataset.

2.3 Optimization

To obtain orbital descriptors (and energies to calculate the hessian of the energy) we pre-train PhisNet
against the Fock matrix, the overlap matrix, the energy and the forces of Hartree-Fock calculations
in a minimal basis set across 47k molecules. Further details of the loss function, dataset, and the
adaptions to PhisNet can be found in Appendix C. For all subsequent experiments, we freeze the
parameters of PhisNet. A full DL-VMC calculation to obtain a ground-state energy prediction can be
divided into three consecutive steps:

1. Supervised optimization using PhisNet: Initially, the neural-network orbitals (cf. Eq. 3)
are optimized to minimize the residual against orbitals obtained from PhisNet. It ensures
that the initial wavefunction roughly resembles the true ground-state and is omitted when
fine-tuning an already optimized base model.

2. Variational optimization: Minimization of the energy (cf. Eq. 2) by drawing samples from
ψ2 using MCMC and updating the wavefunction parameters using the KFAC optimizer [30].

3. Evaluation: For inference of the ground-state energy, we sample electron positions using
MCMC, and evaluate the energy using Eq. 2 without updating θ.

To train a multi-geometry transferable wavefunction we further divide the variational optimization of
a neural wavefunction into two steps:

1. Pre-training: A single wavefunction model is trained across many molecules and geometries.
In every gradient step we only consider a single geometry per batch. The next geometry to
optimize is chosen based on the energy variance as proposed by [10]. To sample continuously
the space of molecular geometries we distort each geometry every 20 optimization steps as
described in Sec. 2.2. We refer to evaluations of this model on new systems as "zero-shot".

2. Fine-tuning: A a small number of additional variational optimization steps is done using
geometries of interest, starting from the weights of a pre-trained base model. This procedure
yields a model that is specialized to the molecule at hand and typically yields more accurate
energies on the specific problem than the raw pre-trained model.

3 Results

We pre-train our wavefunction model on a dataset of 98 molecules (699 conformers) for 256k
optimization steps using the architecture and training procedure outlined in Sec. 2. Below we
demonstrate the performance of this model, for zero-shot evaluations and after subsequent fine-
tuning.

3.1 Accuracy of pre-trained model for absolute energies

To test the transfer capabilities of the model, we evaluate it on test-sets, which each contain 4
randomly chosen and perturbed molecules, grouped by molecule size (measured as the number
of non-Hydrogen atoms). To avoid train/test leakage, we excluded all molecules that are part of
these test sets from the training set (cf. Appendix D). Although the model has only been trained on
molecules containing up to 4 heavy atoms, we evaluate its performance across the full range up to 7
heavy atoms. We find that for molecules containing up to 6 heavy atoms our method outperforms
CCSD(T) with a 2Z basis set and outperforms CCSD(T) with a 4Z basis set after only 4k fine-tuning
steps. This is a large improvement over the state of the art: Zero-shot evaluations by Gao et al. [17]
did not manage to outperform a Hartree-Fock baseline, even on the toy system of Hydrogen-chains.
Similarly, Scherbela et al. [25] achieve high accuracy after fine-tuning, but result that are worse than
Hartree-Fock in a zero-shot setting. In contrast, our improvements to their method increase zero-shot
accuracy by more than 2 orders of magnitude.
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Figure 2: Absolute energies: Energies relative to CCSD(T)-CBS (complete basis set limit) when re-
using the pre-trained model on molecules of varying size without optimization (a) and after fine-tuning
(b). (c) depicts energy for the test set containing 3 heavy atoms as a function of optimization steps
and compares against SOTA methods. Solid lines are with pre-training, dashed lines without. Gray
lines correspond to conventional methods: Hartree-Fock in the complete basis set limit (HF-CBS),
and CCSD(T) with correlation consistent basis basis sets of double to quadruple valence (CC-nZ).

We furthermore find that fine-tuning pre-trained wavefunctions can be more cost effective than well
established conventional methods. For a typical molecule containing 5 heavy atoms, we require
9.5 node-hours for 4k fine-tuning steps, achieving accuracy that surpasse CCSD(T)-4Z. In contrast,
CCSD(T)-4Z requires 10.5 node-hours and 16k steps of PsiFormer (achieving the same accuracy),
require 53 node-hours. All run-times are listed in Tab. 3 of Appendix I.

To further test the accuracy of our method, we evaluate for 3 heavy atoms the performance with
increasing fine-tuning steps (cf. Fig. 2c). We compare our work (with and without fine-tuning)
against CCSD(T) and reference calculations done with state-of-the-art DL-VMC methods [6, 8].
For up to 16k optimization steps, our pre-trained model yields energy errors that are 1-2 orders of
magnitude lower than other reference methods. After longer optimization the method by Gerard
et al. [8] and PsiFormer [6] surpass our predictions. We hypothesize that this is not to blame on
pre-training, but that our orbital prediction framework, which allows us to optimize across molecule,
yields less expressive wavefunctions than a fully trainable backflow. This is demonstrated by the
fact that a pre-trained and non-pre-trained model converge to the same energy in the limit of long
optimization.

Like the absolute energies, also the variance of the local energies (another measure of wavefunction
accuracy) is substantially improved by our method and results are depicted in Appendix E.

3.2 Accuracy for relative energies

While Sec. 3.1 demonstrates high accuracy for absolute energies, we find that relative energies (being
the small difference between two large absolute energies) can be unsatisfactory in the zero-shot
regime, and a small number of fine-tuning steps is required to reach quantitatively correct relative
energies. Fig. 3 demonstrates this issue on 4 distinct systems, each highlighting a different challenge
for our model. For each system, we evaluate our pre-trained base model without any system specific
optimization (zero-shot), and after 4000 fine-tuning steps. The fine-tuning optimization is done
separately for each of the 4 systems, analogously to Sec. 2.3, yielding 4 distinct wavefunctions that
each represent the ground-state wavefunctions of all considered geometries per system. Results after
more fine-tuning steps can be found in Appendix F.

Bicyclobutane conformers Fig. 3a depicts the energies of 5 conformers of bicyclobutane relative to
the energy of its initial structure. The system is of interest, because CCSD(T) severely underestimates
the energy of the dis-TS conformer by ≈ 60 mHa [31]. While our zero-shot results yield the correct
sign for the relative energies, they are quantitatively far off from the gold-standard DMC reference
calculation [31], in particular for the dis-TS geometry, where we overestimate the relative energy
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Figure 3: Challenging relative energies: Relative energies obtained with and without fine-tuning
on 4 distinct, challenging systems, compared against high-accuracy reference methods. a) Relative
energy of bicyclobutane conformers vs. the energy of bicyclobutane b) Potential energy surface (PES)
of N2, c) global rotation of propadiene d) relative energy of twisted vs. untwisted propadiene.

by 90 mHa. However when fine-tuning our model for only 700 steps per geometry (4k total), we
obtain relative energies that are in close agreement with DMC (max. deviation 2.1 mHa). Comparing
to FermiNet [5] we find that our results are more accurate than a FermiNet calculation after 10k
steps (requiring twice our batch size; max. deviation 7.5 mHa), and slightly less accurate than a
FermiNet calculation optimized for 200k steps (max. deviation 1.4 mHa). As opposed to CCSD(T)
our model does not suffer from systematic errors, even for the challenging dis-TS geometry. A table
of all relative energies can be found in Appendix F.

Nitrogen dissociation When evaluating the energy of an N2 molecule at various bond-lengths we
obtain high zero-shot accuracy near the equilibrium geometry (d = 2.1 bohr; in training set), but
substantially lower accuracy at smaller or large bond lengths (cf. Fig. 3b). This is due to the lack of
dissociated atoms in the pre-training dataset and again mostly remedied by finetuning. In the most
challenging regime around d = 3.7, even with fine-tuning we obtain energies that are 12 mHa above
high-accuracy results obtained by Gerard et al. [8], indicating the need for longer fine-tuning.

Global rotation of propadiene Energies of molecules are invariant under global translation or
rotation of all particle positions. The wavefunction however is not invariant and neither is our
wavefunction ansatz, which can lead to different energies for rotated copies of a molecule. When
evaluating the energy of our model on 20 copies of propadiene (C3H4) rotated around a random
axis, we find typical energy variations of ±1 mHa, but also a individual outliers, deviating by up to 5
mHa. This highlights a dilemma facing all existing DL-VMC models: On the one hand, constraining
the wavefunctions to be fully invariant under rotation (or even just invariant under symmetries of
the Hartree-Fock orbitals) is too restrictive to express arbitrary ground-state wavefunctions [23].
One the other hand, our approach of biasing the model towards rotation-invariant energies by data
augmentation, appears to be helpful but not to be fully sufficient. When evaluating an earlier
checkpoint of our base model (trained for 170k epochs instead of 256k), we observe mean energy
variations of ±3 mHa and outliers of up to 30 mHa, indicating the positive impact of prolonged
training with data augmentation. We again find 4000 fine-tuning steps split across all geometries are
sufficient to reduce errors below chemical accuracy of 1.6 mHa.

In addition to augmenting data during training time, we can also augment the data during inference
time, to obtain fully rotation-invariant energies, from an approximately rotation invariant model. We
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achieve this by randomly rotating the molecule at every inference step and averaging across all rotated
geometries. Since the Monte-Carlo estimate is already an average across many different samples
anyways, this comes at no additional computational cost. Fig. 3c shows that with rotation averaging
we obtain energies that are fully invariant, up to Monte-Carlo noise.

Twisted propadiene Twisting one of the C=C bonds of propadiene leads to a transition state with
an energy difference of 110 mHa. Evaluating the energy without fine-tuning on an equidistant grid
of torsion angles, we obtain the correct barrier height (112 mHa), but also deviations of up to 40
mHa. During pre-training we purposefully sampled twisted molecules, but only included equilibrium
geometries, transition geometries, and one intermediate twist (cf. Appendix D). This seems sufficient
for correct zero-shot barrier heights, but insufficient for high accuracy along the full path. Short
fine-tuning (4k steps distributed across all 10 geometries) yields excellent agreement with CCSD(T):
∼0.2 mHa discrepancy for the barrier height and a maximum deviation of 2 mHa along the path.

3.3 Ablation studies

10 20 50 100 200 500 1000 2000 5000
E ECCSD(T) / mHa

5620

-4260
(-76%)

134
(+10%)

-1470
(-98%)

1.5
(+5%)
-12.5
(-37%)

21.5

Scherbela et al.
128k pre-training
+ improved
    architecture
+ normal-mode
    distortions
+ larger
    training set

+ 8 determinants

+ 256k pretraining-
    steps

Our work

a Zero-shot accuracy

0 2 5 8 10 12 15 18 20
E ECCSD(T) / mHa

17.8

-6.2
(-35%)

-1.4
(-12%)

-0.9
(-9%)

-0.7
(-8%)

-1.8
(-21%)

6.8

b Accuracy after 4000 fine-tuning steps

Figure 4: Ablation study: Breakdown of absolute energy difference between Scherbela et al. [25]
and our work, when evaluating the respective base models on the test set consisting of 3 heavy atoms.
Panel a shows accuracy gains for zero-shot evaluation, panel b the accuracy after 4k fine-tuning
steps. First and last row depict their and our absolute energy respectively, intermediate bars show
the subsequent improvements of various changes in mHa (and %). Note that panel a. is plotted on a
logarithmic scale due to the large energy difference.

To analyze the relative importance of our changes, we break down the accuracy gap between our work
and the prior work by Scherbela et al. [25] in Fig. 4. We start with their model checkpoint trained
for 128k epochs on their dataset consisting of 18 different compounds. Next, we train a model using
our improved architecture with their dataset and methodology, already reducing the zero-shot error
by 76% and fine-tuning error by 35%. The next model additionally uses normal-mode distortions
to augment the training dataset, decreasing the fine-tuning error by another 12%. Additionally
increasing the training set size to our dataset containing 98 molecules and the corresponding torsional
conformers, reduces the zero-shot error by 98% and yields modest improvements in the fine-tuning
case. Increasing the number of determinants from 4 to 8 and increasing the number of pre-training
steps from 128k to 256k improve fine-tuning accuracy by 8% and 21% respectively. The two largest
contributions overall are the improved architecture – yielding substantial gains both in zero-shot
and fine-tuning – as well as the larger training set, which is crucial for high zero-shot accuracy.
This is consistent with [25], which found that both model size and training set size do improve
performance, while pre-training duration shows diminishing returns after 256k steps. Since we
pre-train the PhisNet model against Hartree-Fock references and do not update its parameters during
optimization, the PhisNet model by itself contributes no substantial accuracy improvement. It impacts
energy predictions indirectly, by providing pre-trained nuclear emebddings xnuc and enabling fast
geometry distortions and rotations during training and inference, which in turn improve accuracy.

3.4 Large-scale experiment

To showcase the scalability of our approach, we evaluate zero-shot predictions of the absolute energies
for a subset of 250 molecules from the QM7 dataset [32], containing molecules with 14-58 electrons.
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Since CCSD(T) calculations would be prohibitively expensive for a dataset of this size, in Fig. 5a we
compare against density functional theory (DFT) reference calculations (PBE0+MBD, [26]). Fig.
5b breaks down the energy differences compared to DFT, by molecule size. For molecules with
less than 5 heavy atoms we obtain energies that are lower than DFT by 10-120 mHa. Because our
ansatz is variational (in contrast to DFT), our lower energies translate to a more accurate prediction of
the true ground-state energy, confirming again our high zero-shot accuracy. With increasing system
size the accuracy deteriorates, due to increasing extrapolation and out-of-distribution predictions,
consistent with our results in Sec. 3.1. One reason for the large energy differences in larger molecules
is the increasing inter-atomic distance within the molecules with increasing number of atoms (cf. Fig.
5c). While the largest inter-atomic distance observed in the training set is 11 bohr, the evaluation
set contains distances up to 17 bohr. This issue could be overcome by employing a distance cutoff,
as it is already applied in supervised machine-learned potential energy surface predictions [19, 33]
or has just recently been incorporated into a neural wavefunction [17] via an exponential decay
with increasing inter-particle distance. Another potential solution is to include larger molecules or
separated molecule fragments in the pre-training molecule dataset, reducing the extrapolation regime.
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Figure 5: Zero-shot on QM7: a) Our zero-shot energies vs. DFT [26] b) Histogram of energy
residuals (truncated at 1.25 Ha for clarity) c) Residuals vs. largest inter-molecular distance RIJ .

4 Discussion

We have presented to our knowledge the first ab-initio wavefunction model, which achieves high-
accuracy zero-shot energies on new systems (Sec. 3.1 and Sec. 3.4). Our pre-trained wavefunction
yields more accurate total energies than CCSD(T)-2Z across all molecule sizes and outperforms
CCSD(T)-3Z on molecules containing up to 5 heavy atoms, despite having been trained only on
molecules containing up to 4 heavy atoms. We find that relative energies of our model are qualitatively
correct without fine-tuning, but need on the order of 4000 fine-tuning steps to reach chemical accuracy
of 1.6 mHa (Sec. 3.2). This is a substantial improvement over previous work, which so far has fallen
in two categories: High-accuracy ansätze (such as [3, 6]) that cannot generalize across molecules and
thus need ca. 10x more compute to reach the same accuracy, or methods that can generalize ([17,
25]), but yield orders of magnitude lower accuracy in the zero- or few-shot regime. We demonstrate
in Sec. 3.3 that these improvements are primarily driven by an improved architecture (containing a
more expressive electron embedding and an ML-based orbital model), improved geometry sampling,
and a larger training dataset.

While results are encouraging in the zero- and few-shot regime, open questions for further research
abound. The most pressing issues are currently limited zero-shot accuracy for relative energies, and
potentially limited expressiveness of the ansatz in the regime of very long optimization. Zero-shot
accuracy could be further improved by training on an even larger dataset, further improved geometry
sampling (in particular of torsion angles), and an interaction cut-off to avoid previously unseen
particle pairs for new large molecules. Furthermore SE(3)-symmetry of the wavefunction should be
explored further, since currently only the orbital part of our architecture is SE(3)-equivariant. We
experimented with a fully equivariant architecture, but found the resulting wavefunctions to not be
expressive enough. To improve overall accuracy, attention based embeddings [6, 34] could be pursued.
Additionally, we currently freeze the weights of the orbital embedding to simplify the architecture
and avoid back-propagation through the iterative orbital localization procedure. Optimizing these
weights in addition to the electron embedding will lead to a more expressive ansatz.
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Supplementary material for
Variational Monte Carlo on a Budget –

Fine-tuning pre-trained Neural Wavefunction

A Electron MCMC initialization

To investigate the impact of the initial distribution of electron positions on the equilibration of the
Markov Chain, we run two evaluations for a glycine molecule, using a pre-trained wavefunction. We
perform no initial burn-in and use every 50th sample for energy evaluation. If the chain was perfectly
equilibrated right after initialization, all sampled energies would fluctuate around the mean energy.
However as Fig. 6b shows, it takes several thousand steps for the sampled energies to converge to
the correct mean. This is particularly pronounced with Gaussian initialization of electron positions,
which is the default in state-of-the-art DL-VMC codes such as FermiNet [3]. Using an exponential
distribution of the initial electron positions much more closely resembles the correct electron density
ψ2 (cf. Fig. 6a) and thus reaches equilibrium substantially faster.
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Figure 6: Effect of electron initialization: Initializing the electron positions using an exponential
distribution instead of Gaussian, better fits the actual density (a), and thus leads to faster equilibration
of observables during evaluation (b).

B Orbital localization

Our model uses orbital embeddings xorb as inputs to parameterize the backflows f orb, and exponents
gorb of the orbitals. These orbital embeddings were introduced by Scherbela et al. [25] in the form of
molecular orbital expansion coefficients, obtained from a self consistent Hartree-Fock calculation. In
this setting, the coefficients xorb are not uniquely defined, but only up to a linear transformation U
with determinant ±1

xorb
Ik =

Norb∑

n=1

Uknx̂
orb
Ik , U ∈ RNorb×Norb , detU = ±1. (15)

This stems from the fact that the corresponding Hartree-Fock wavefunction is invariant under such a
transformation. Consequently there is free choice, which linear combination of embeddings xorb to
choose from without any loss of information. We follow the approach of [25], by choosing U such
that the corresponding Hartree-Fock orbitals are maximally localized according to the Foster-Boys
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metric, i.e. minimize the spatial variance L:

ϕk(r, U) =

Nnuc∑

I=1

Nbasis∑

µ=1

bIµ(r)Uknx̂
orb
Inµ (16)

L(U) =
∑

k

∫
ϕ2k(r, U)r2dr −

(∫
ϕ2k(r, U)rdr

)2

(17)

Here bIµ(r) denotes µ-th basis function of the Hartree-Fock expansion, centered on the I-th nucleus.
In practice the integrals of Eq. 17 do not have to be evaluated explicitly, but can instead be computed
via the overlap matrix S. The minimization of L is typically done iteratively, requires on the order of
10 steps, and is readily implemented in many open-source quantum chemistry codes such as pySCF
[35].

C Adaption of PhisNet

We heavily rely on PhisNet by Unke et al. [20] to obtain orbital descriptors without the need for a
separate SCF calculation. Compared to their original work, we made several simplifications, which
are motivated by the fact that we do not predict final high-accuracy orbitals in a large basis set, but
only use PhisNet as a feature extractor by predicting orbitals in a minimal basis-set:

• Layer Norm We found deep variants of PhisNet to be unstable to train and mitigated the
issue by adding an (equivariant) layer norm after each PhisNet module.

• Simplified Fock matrix prediction The original PhisNet implementation uses a final
interaction between the node embeddings, before predicting the elements of the Fock matrix.
We found this interaction to be superfluous for our purposes and left it out for simplicity.

• Separate energy head The original PhisNet computes energies via the eigenvalues obtained
by diagonalization of the Fock matrix. We instead predict energies using a separate head on
top of the scalar features of the node embeddings.

• Smaller network We changed the hyperparameters to obtain a smaller and faster version of
PhisNet which obtained sufficient accuracy for our purposes. We used 2 layers (instead of 5)
and Lmax = 2 (instead of 4). This reduces the number of parameters from 17M to 3M.

• Diverse training set While the original work optimized separate models for each molecule
(e.g. by training on different geometries of a molecular dynamics simulation), we optimize a
single model to predict F , S, E, and ∇E across a dataset of 47k geometries sampled from
QM7-X [26].

• JAX re-implementation We re-implemented PhisNet in JAX, using the e3nn library [36] to
construct the SE(3)-equivariant operations.

We train the PhisNet-model on a dataset of 47k molecules from QM7X [26], using the Adam optimizer
[37] on the following loss

L =
∑

n

(
Ephis(Rn,Zn)− Eref,n)2 + (18)

+
∑

nIζ

(
∂

∂RnIζ
Ephis(Rn,Zn)−Gref,n

Iζ

)2

+ (19)

+
∑

nIJµν

(
F phis
IJµν(R

n,Zn)− F ref,n
IJµν

)2
+ (20)

+
∑

nIJµν

(
Sphis
IJµν(R

n,Zn)− Sref,n
IJµν

)2
. (21)

Here E denotes energies, G denotes gradients of energies, F Fock matrices, and S overlap matrices.
The indices I, J run over nuclei, the indices µ, ν over basis functions, and the index n over samples
in a batch.
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D Molecule datasets

Bicyclobutane For the Bicyclobutane to 1,3-butadiene transition we use the geometries from Kinal
et al. [31] and compare against the reference energies stated in Spencer et al. [5].

N2 For the N2 potential energy surface with various bond-lengths we used the geometries including
reference calculations from [8].

Propadiene The global rotation of 360° degrees for propadiene is performed on the geometry
which is part of the test set for 3 heavy atoms. For the torsion experiment we used the equilibrium
geometry and rotated the torsion angle by 90° degrees in steps of 10° degrees.

Zero-shot and fine-tuning dataset The results on zero-shot and few-shot predictions for increasing
number of heavy atoms are performed on random subsets of molecules. For 5-7 heavy atoms we
sample 4 unique and distorted molecules from QM7-X [26]. For 4 heavy atoms we use all geometries
from the Bicyclobutane dataset. For 3 heavy atoms we use the ablation dataset.

Ablation dataset For the ablation study, we use one geometry per molecule from the out-of-
distribution test set from Scherbela et al. [25], leading to a set of four distinct molecules. We ensure
that these molecules are not part of the training set.

Large scale experiment For the large scale experiment we used a stratified random sample of 250
molecules from QM7 [32]. It contains all molecules with up to 4 heavy atoms, and additionally 65
randomly chosen molecules for 5, 6 and 7 heavy atoms each.

Pre-training dataset for transferable neural wavefunctions To train our pre-trained wavefunc-
tions we use two datasets, consisting of 18 and 98 disparate molecules. For part of the ablation we use
the dataset proposed in [25] and an extended version with 80 additional molecules. The additional
compounds are a combination of all valid SMILES generated with RDKit [38] with 3 heavy atoms,
allowing only Nitrogen, Oxygen and Carbon with single-, double- or triple-bonds, and all molecules
up to four heavy atoms from QM7-X [26] (excluding molecule containing Fluorine). To prevent a
train-test leakage, we remove Bicyclobutane (including all conformations) and the four molecules
from the ablations dataset. Since the normal-mode-distortions by design do not generate strongly
distorted geometries, we augment the 98-molecule-dataset with rotated dihedral angles. To generate a
subset of all possible dihedral angles for a heavy-atom bond we first generate samples with equidistant
angles for all possible dihedral angles and compute Hartree-Fock energies with a minimal basis-set.
We include the equilibrium geometry and all extrema of the potential energy surface with respect to
the rotation of a single dihedral angle if the energy of the extrema is significantly different to already
included geometries of the same molecule. Additionally, we include the transition geometry towards
the respective extrema and again only include energetic diverse states. Finally, to make sure that
certain molecules are not underrepresented in the dataset we make sure that all molecules have at
least 5 geometries that get distorted during pre-training by adding copies of the equilibrium geometry.
Overall this yields 699 initial geometries R0 for pre-training.

E Energy variance

Fig. 7 depicts the energy variance obtained by various models. Analogously to the the energies
presented in Fig. 2 of the main text, we also find that our pre-trained model achieves substantially
lower energy variance compared to previous generalizing wavefunctions. Notably on the test set with
3 heavy atoms, the variance of our zero-shot model is on par with the variance of a PsiFormer model
trained for 16k steps.

F Relative energies

To better depict the accuracy of the models’ relative energies for the test systems in Fig. 3 of the main
text, we depict the difference of relative energies between our model and a references method in Fig.
8. Furthermore we list numerical values vor all energies of Fig. 3a in Tab. 1. We find that on these
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Figure 7: Variance of energies: Variance when re-using the pre-trained model on molecules of
varying size without optimization (a) and after fine- tuning (b). For the test set containing 3 heavy
atoms as a function of optimization steps, comparing against current state-of-the-art methods. Solid
lines correspond to pre-trained models, dashed lines to models without pre-training (c).

challenging systems our model yields relative energy errors of up to 15 mHa when only fine-tuned
for 400 steps per geometry. When fine-tuning our pre-trained model for 3200 steps per geometry, we
obtain relative energies that are accurate within 2-3 mHa.
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Figure 8: Challenging relative energies: The difference between relative energies of a reference
method vs our work for two challenging systems. a) Nitrogen dimer: Difference of relative energies
to the equilibrium geometry for our approach to reference calculation from Gerard et al. for N2,
a) Propadiene: Difference of relative energies of the transition barrier of twisted vs. untwisted
propadiene. As reference method we choose PsiFormer with 64k optimization steps. This figure
complements Fig. 3b,d of the main text with results for additional fine-tuning steps.

G Reference energies

CCSD(T) All CCSD(T) energies – except explicitly stated otherwise – were obtained using ORCA
[39] starting from a restricted Hartree-Fock calculation. We use correlation consistent basis sets of the
cc-pCVXZ family, with X in {2, 3, 4}. To extrapolate to the complete basis set limit (CBS), we use

4



structure CCSD(T)
[31]

DMC
[31]

FermiNet 200k
[5]

FermiNet 10k
[5]

Our work
zero-shot

Our work
700 per geom

con_TS 64.4 64.4 64.1 63.9 94.0 66.6
dis_TS 34.7 93.4 92.0 87.1 183.8 94.5
g-but -40.0 -40.2 -40.3 -44.9 -48.5 -40.4
gt-TS -35.5 -35.4 -35.9 -42.9 -46.9 -36.7
t-but -44.6 -44.5 -45.3 -47.5 -51.8 -43.2

Table 1: Energies relative to the energy of bicyclobutane in mHa, including the zero-point vibrational
energy correction from Kinal et al. [31]. This data complements Fig. 3a in the main text.

the approach outlined in [3] and fit the following functions with free parameters EHF
CBS, E

corr
CBS, a, b, c:

EHF
X = EHF

CBS + ae−bX

Ecorr
X := EHF

X − ECCSD(T)
X = Ecorr

CBS + cX−3

ECCSD(T)
CBS = EHF

CBS + Ecorr
CBS

We stress that although CCSD(T)-energies are often considered as "gold-standard", they do not
necessarily represent the actual ground-state energy. There are many cases, where CCSD(T) either
overestimates the true ground-state energy, or even underestimates it, because CCSD(T) does not
yield upper bounds to the true ground-state energy.

PsiFormer For Fig. 2 we used the open-source FermiNet codebase [40]. The codebase didn’t allow
for inference calculation, therefore a slight fix was applied. All calculations were performed with the
small settings as proposed in von Glehn et al. [6].

H Hyperparameters

A detailed description of the hyperparameter used in this work can be found below (cf. Tab. 2). For
the mapping of the orbital descriptors to the electron embeddings to build the orbitals we rely on the
hyperparameter from [25]. For optimization we rely on the second-order method KFAC [30] and use
their Python implementation [41]. During the continuous sampling of the geometries we allow each
geometry to perform a maximum of 20 steps of normal-mode distortion from the initial geometry and
reset to the original one once the threshold is reached.

I Runtime and computational resources

Tab. 3 lists the run-times for our method and a com-
parable conventional reference method (CCSD(T)-
4Z) for a typical molecule with 5 heavy atoms. We
find that our fine-tuning our model for 4k steps
yields lower absolute energies than CCSD(T)-4Z
(cf. Fig. 2) at similar computational cost. This
is in contrast to many earlier works that achieve
highly accurate energies, but at computational cost
that far surpasses the cost of conventional methods
for small molecules.
Overall we used ≈ 5k GPUhs (A100) for devel-
opment and training of our base models, and an-
other 5k GPUhs (A40) on evaluations and fine-
tuning. Additionally we required ≈ 20k CPUhs
for CCSD(T) reference calculations.

Method Runtime / h

Our work, zero-shot 1.0

Our work, 4k fine-tuning 9.5

PsiFormer, 16k steps 53.0

CCSD(T), 4Z basis 10.5

Table 3: Runtime of various quantum chem-
istry methods for C4OH6. All timings are
in node hours, being 2 A100-hours for our
work and PsiFormer, and 256 CPU-hours for
CCSD(T).
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J Code and data availability

All code, configuration files, geometries, datasets and obtained energies are available on GitHub
under https://github.com/mdsunivie/deeperwin. Model weights are available on figshare
under https://doi.org/10.6084/m9.figshare.23585358.v1.

Electron Embedding Hidden dimension Nemb 256
№ iterations 4

Nuclear Embedding Hidden dimension x̃nuc 64
№ layer MLP 1

Message passing

Activation function SiLU
№ layer edge embedding 3
Dimension edge embedding 64
Dimension linear layer 32

Markov Chain
Monte Carlo

№ walkers 2048
№ decorrelation steps 50
Target acceptance prob. 50%

PhisNet [20]

Pre-trained against basis set STO-6G
№ iterations 2
Harmonic degree L 2
№ radial basis functions 128
Hidden dimension of xnuc 128
Distance cutoff (bohr) 30

Transferable
atomic orbitals [25]

№ determinants Ndet 8
№ hidden layers f orb 2
Hidden dimension of f orb 256
№ hidden layers gorb 2
Hidden dimension gorb 128
№ iterations MPNN 2
№ radial basis functions 16
Hidden edge embedding dimension 32
Hidden node embedding dimension 16
Activation function SiLU

Variational
pre-training

Optimizer KFAC
Batch size 2048
Norm constraint 3× 10−3

Initial damping d0 1
Minimal damping dmin 0.001
Damping rate decay d(t) = d0 exp(−t/20000)
Initial learning rate lr0 0.1
Learning rate decay lr(t) = lr0(1 + t/6000)−1

Optimization steps 128,000 - 256,000

Changes for
fine-tuning

Learning rate decay lr(t) = lr0(7 + t/6000)−1

Optimization steps 0 - 32,000

Sampling
geometries

Distortion energy β 0.005 Ha
Max age 20
Bias towards original geometry α 0.2

Table 2: Hyperparameter settings used in this work

6



Transferable Neural Wavefunctions for Solids

L. Gerard†∗, M. Scherbela†∗, H. Sutterud‡∗, W.M.C. Foulkes‡, and P. Grohs†, ¶

†Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
‡Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ

¶Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences,
Altenbergerstrasse 69, 4040 Linz, Austria

∗These authors contributed equally

Abstract

Deep-Learning-based Variational Monte Carlo (DL-VMC) has recently emerged as a highly
accurate approach for finding approximate solutions to the many-electron Schrödinger equa-
tion. Despite its favorable scaling with the number of electrons, O(nel

4), the practical value
of DL-VMC is limited by the high cost of optimizing the neural network weights for every
system studied. To mitigate this problem, recent research has proposed optimizing a single
neural network across multiple systems, reducing the cost per system. Here we extend this
approach to solids, where similar but distinct calculations using different geometries, boundary
conditions, and supercell sizes are often required. We show how to optimize a single ansatz
across all of these variations, reducing the required number of optimization steps by an order
of magnitude. Furthermore, we exploit the transfer capabilities of a pre-trained network. We
successfully transfer a network, pre-trained on 2× 2× 2 supercells of LiH, to 3× 3× 3 super-
cells. This reduces the number of optimization steps required to simulate the large system by
a factor of 50 compared to previous work.

1 Introduction

Many interesting material properties, such as magnetism and superconductivity, depend on the
material’s electronic structure as given by the ground-state wavefunction. The wavefunction may
in principle be found by solving the time-independent Schrödinger equation, but doing so with
sufficient accuracy is challenging because the computational cost grows dramatically with the
number of particles. The challenge is particularly pronounced in solid state physics, where accurate
calculations for periodic systems require the use of large supercells — and consequently many
particles — to minimize finite-size effects.

Over the past few decades, density functional theory (DFT) has emerged as the primary workhorse
of solid state physics. When using local or semi-local exchange-correlation functionals such as
LDA or PBE [1], DFT calculations have a favorable scaling of O(nel3) or better, where nel is the
number of electrons in the system, and an accuracy that is often sufficient to help guide and predict
experiments [1, 2]. However, the choice of functional is in practice an uncontrolled approximation
and DFT sometimes yields quantitatively or even qualitatively wrong results, especially for strongly
correlated materials [3, 4].

Another approach, known as variational Monte Carlo (VMC), uses an explicit parameterized rep-
resentation of the full many-body wavefunction and optimizes the parameters using the variational
principle. This method has a favorable scaling of O(nel3−4) [5, 6] but is limited in accuracy by the
expressivity of the ansatz used. Recently, deep neural networks have been employed as wavefunc-
tion ansätze [6–8] and used to study a large variety of systems including small molecules [6, 9, 10],
periodic model systems described by lattice Hamiltonians [7, 11–13], the homogeneous electron gas
[14, 15], and Fermi liquids [16, 17]. Thanks to their flexibility and expressive power, deep-learning-
based VMC (DL-VMC) approaches provide the best current estimates for the ground-state energies
of several small molecules [9, 10]
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Efforts to apply DL-VMC to real solids [18, 19] have been limited by the high computational cost
involved. While a single calculation may be feasible, studying real solids requires many similar
but distinct calculations. First, it is necessary to perform calculations involving increasingly larger
supercells to estimate finite-size errors and extrapolate results to the thermodynamic limit. Second,
twist-averaged boundary conditions (TABC) are used to accelerate the rate at which the finite-
size errors reduce as the supercell size increases [20]. This requires averaging the results for each
supercell over many calculations using different boundary conditions. Lastly, studying a given
system often requires calculations for different geometries and lattice constants. Since most existing
DL-VMC ansätze require optimizing a new wavefunction from scratch for each new system, the
computational cost quickly becomes prohibitive even for systems of moderate size. For example,
Li et al. proposed DeepSolid [18], an ansatz that can accurately model periodic wavefunctions with
up to 100 electrons, but required over 80k GPU hours to study a single system.

In this work we implement a transferable DL-VMC ansatz for real solids that takes as input not only
the electron positions but also other parameters of the system, such as its geometry or boundary
condition. The key idea, based on [21] and detailed in Sec. 4.3, is to map computationally cheap,
uncorrelated mean-field orbitals to expressive neural network orbitals that depend on the positions
of all of the electrons. The transferability of the network orbitals allows us to optimize a single
ansatz for many variations of unit-cell geometry, boundary condition and supercell size all at once.
Because the ansatz learns to generalize across systems, we can use pre-trained models as highly
effective initializers for new systems or larger supercells.

Compared to previous DL-VMC work without transferability, our approach yields more accurate
results, gives access to denser twist averaging (reducing finite-size effects), and requires a fraction
of the computational resources. For example, for lithium hydride, transferring a 32 electron calcu-
lation to one with 108 electrons yields more accurate results than previous work [18] at ≈ 1/50 of
the computational cost.

This paper is structured as follows. Sec. 2 describes the results of applying the transferable DL-
VMC ansatz to three different systems: 1D hydrogen chains, 2D graphene, and 3D lithium hydride.
In Sec. 3 we discuss the implications of the results, limitations of the ansatz, and possible future
work. Sec. 4 explains the DL-VMC approach and our ansatz, as well as other technical details of
our work.

2 Results

2.1 1D: Hydrogen chains

Chains of hydrogen atoms with periodic boundary conditions provide a simple 1D toy system
that nevertheless exhibits rich physics such as dimerization, a lattice-constant-dependent metal-
insulator transition, and strong correlation effects. A collaborative effort [3, 22] has obtained
results for this system using a large variety of high-accuracy methods, providing a trustworthy
benchmark.

Energy per atom The first test is to obtain the total energy per atom for a fixed atom spacing,
R = 1.8a0 (where a0 is the Bohr radius), in the thermodynamic limit (TDL) attained as the
number of atoms in the supercell tends to infinity. To this end, we train two distinct models on
periodic supercells with Natoms = 4, 6, . . . , 22. The first model is trained at twist k = 0 (the Γ
point) only. The second is trained using all twists from a Γ-centered four-point Monkhorst-Pack
grid [23]. The three inequivalent twists are k = 0, 14 ,

1
2 in units of 2π/R, and their weights are

w = 1, 2, 1, respectively. Once the model has been pre-trained on these relatively short chains,
we fine-tune it on larger chains with Natoms = 32, 38. We use the extrapolation method described
in [22] to obtain the energy E∞ in the TDL. This entails fitting a polynomial of the form E =
E∞ + E1N

−1
atoms + E2N

−2
atoms. Previous authors have extrapolated the energy using only chain

lengths of the form Natoms = 4n + 2, n ∈ N, which have filled electronic shells. We also report
extrapolations using chain lengths Natoms = 4n, which lead to partially filled shells.
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Fig. 1a shows that all of our extrapolations (Γ-point filled shells, Γ-point unfilled shells, and TABC)
are in good qualitative agreement with previous results obtained using methods such as lattice-
regularized diffusion Monte Carlo (LR-DMC) [22] and DeepSolid [18], a FermiNet-based [6] neural
wavefunction for solids. Quantitatively, we achieve slightly lower (and thus, by the variational
principle, more accurate) energies than DeepSolid for all values of Natoms. Using TABC, we
obtain E∞ = −565.24(2)mHa, which is 0.2 − 0.5mHa lower than the estimate obtained using
LR-DMC and DeepSolid, and agrees within uncertainty with the extrapolated energy computed
using the auxiliary-field quantum Monte Carlo (AFQMC) method [22]. Most notably, though,
we obtain these results at a fraction of the computational cost of DeepSolid. Whereas DeepSolid
required a separate calculation with 100,000 optimization steps for each value of Natoms (and
would have required even more calculations for twist-averaged energies), we obtain results for all
10 chain lengths and values of Natoms = 4, . . . , 22, with 3 twists for each system, using only 50,000
optimization steps in total. Furthermore, by re-using the model pre-trained on smaller chains, we
obtain results for the larger chains with Natoms = 32, 38 using only 2,000 additional steps of fine
tuning. This reduces the cost of simulating the large chains by a factor of approximately 50. We
note that, as expected, the use of TABC reduces the finite-size errors, allows to combine results
for filled and unfilled shells in the extrapolation, and leads to faster and more uniform convergence
of the energy per atom.
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Figure 1: 1D Hydrogen chain: a: Extrapolation of the energy per atom to the thermodynamic
limit for R = 1.8a0. Results obtained using DeepSolid (neural wavefunction), lattice-regularized
diffusion Monte Carlo (LR-DMC), auxiliary field Monte Carlo (AFQMC), and our transferable neu-
ral wavefunction are shown. Open markers indicate energies computed by fine-tuning a model pre-
trained on smaller supercells. The shaded area depicts the statistical uncertainty in the AFQMC
result. Monte Carlo uncertainty of our results is ≈ 10µHa, well below the marker size. b: The
complex polarization |z| as a function of the inter-atomic separation, R, showing a phase transition
between a metal at small R and an insulator at large R. AFQMC, DMC, and VMC results are
taken from [3]. DeepSolid results are taken from [18].

Metal-insulator transition The 1D hydrogen chain exhibits a transition from an insulating
phase at large inter-atomic separation, R, to a metallic phase at small R. The transition can be
quantified by evaluating the complex polarization along the length of the chain

z =
〈
ei

2π
RNatoms

∑nel
i=1 xi

〉
, (1)

where xi is the position of electron i in the direction of the chain. The expectation value is defined
as ⟨. . .⟩ ≡

∫
Ψ∗(r) . . .Ψ(r) dr, where r = (r1, r2, . . . , rnel

) is a 3nel-dimensional vector of electron
positions, Ψ is the (approximate) ground-state wavefunction, and the integral is over all 3nel
electronic degrees of freedom. Although the polarization is easy to evaluate in principle, studying
the transition is computationally costly because it requires many similar but distinct calculations:
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multiple values of R are required to locate the transition; multiple twists k are required to obtain
accurate twist-averaged polarizations; and multiple chain lengths Natoms are required to allow
extrapolation to the TDL. Even for a modest selection of all of these variations, studying the
phase transition in detail requires hundreds of calculations. Using our transferable wavefunction,
on the other hand, allows us to train a single model to represent the wavefunction for all parameter
variations at once.

We trained a single ansatz to describe all 120 combinations of: (a) 3 distinct chain lengths, Natoms =
12, 16, 20; (b) 5 symmetry-reduced k-points of an 8-point Γ-centered Monkhorst-Pack grid; and (c)
8 distinct atom spacings between R = 1.2a0 and R = 3.6a0. A total of 200k optimization steps
were carried out, after which the complex polarization was evaluated using Eq. (1). To improve our
estimates for Natoms → ∞, we fine-tuned this pre-trained model for 2k steps on chain lengths of
Natoms = 40 and a denser 20-point Monkhorst-Pack grid containing 11 symmetry-reduced twists.
Fig. 1b shows that our approach qualitatively reproduces the results obtained using DMC and
AFQMC. In agreement with Motta et al. [3], we observe a second-order metal-insulator transition.
However, where Motta estimates the critical atom spacing Rcrit = 1.70(5)a0, our results are more
consistent with Rcrit = 1.35(5)a0. A possible explanation for the disagreement is that our neural
wave function may be less accurate (and may therefore produce relatively higher energies) for
metals than insulators, disfavoring the metallic phase. Another possible explanation follows from
the observation that, unlike the VMC method used here, the DMC and AFQMC methods yield
biased estimates of the expectation values of operators, such as the complex polarization, that do
not commute with the Hamiltonian [5, 24].

Also in agreement with Motta et al. [3], we find that the hydrogen chain has an antiferromagnetic
ground state at large lattice constant R. The expected atomic spins are zero on every atom, but
the spins on neighbouring atoms are antiferromagnetically correlated. As the lattice constant gets
smaller and the system transitions to the metallic phase, these correlations decrease.

2.2 Graphene

To demonstrate the application of our transferable DL-VMC ansatz to a two-dimensional solid, we
compute the cohesive energy of graphene in a 2 × 2 supercell and compare against the DL-VMC
results of Li et al. [18]. We employ twist-averaged boundary conditions, apply structure-factor-
based finite-size corrections [25] as detailed in the methods section, and add zero-point vibrational
energies (ZPVE) (see Sec. 4.7). Li et al. restricted their calculation to a Monkhorst-Pack grid of
3 × 3 twists, yielding three symmetry-reduced twists in total. In our case, since we are able to
compute multiple twists at once with minimal extra cost, we increase the grid size to 12×12. This
increases the number of symmetry-reduced twists approximatly 6 times, from 3 to 19. The larger
twist grid contains a subset of the twists considered by Li et al., allowing a direct comparison with
their independent energy calculations.

In Tab. 1 (see also Sec. S4 for separate twist energies without ZPVE), we compare total energies
calculated at each of the three twists on the 3 × 3 twist grid and cohesive energies obtained by
averaging over the 3 × 3 and 12 × 12 twist grids. We find that our energies for k1 and k2 are
lower than the energies obtained by DeepSolid by 1 mHa and 7 mHa / primitive cell respectively,
while our energy for k3 is higher by 4 mHa. Overall this leads to a twist-averaged energy which
is 4 mHa / primitive cell lower than the DeepSolid energy. This is a direct consequence of how
our approach divides the total number of optimization steps across twists. At every optimization
step we randomly sample a symmetry-reduced twist to optimize next. The sampling probability
is obtained by normalizing the weights assigned to the twists on the symmetry-reduced 12 × 12
Monkhorst-Pack grid. This procedure ensures that more optimization steps are spent on twists
with high contribution to the final energy and fewer steps on less important twists. The k3 twist
is chosen in around ∼2.0% of all optimization steps, whereas the second twist is chosen two times
more often. The wave function at k2 is therefore optimized more stringently.

Furthermore, we obtain energies not only for the 3× 3 Monkhorst-Pack-grid, but also for the full
12× 12-grid, allowing us to assert convergence with respect to the k-point density. We stress that
we only required a single neural network, optimized for 120k steps to obtain energies for all twists
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(both the 12×12-grid and the 3×3-subset). DeepSolid on the other hand optimized for 900k steps
in total, obtaining energies only for the 3× 3-twist-grid.

We compare against experimental cohesive energies obtained from thermochemistry data for graphite
[26] corrected for the small inter-layer binding energy of 3.5 mHa obtained using the Random Phase
Approximation [27]. When computing cohesive energies and correcting for finite-size effects using
a structure-factor-based correction and ZPVE (see Sec. 4.7) we obtain energies that are 7 mHa
lower than experimental values, i.e. we predict slightly stronger binding than experiment. We
hypothesize that this small discrepancy may be a finite size artifact stemming from the relatively
small 2x2 supercell.

Table 1: Total and cohesive energies of graphene in Hartrees. The upper block of the table
compares our results against the total energies computed by Li et al. [18] at the three symmetry-
inequivalent twists on the 3 × 3 Monkhorst-Pack grid. The twists are expressed in the basis of
the reciprocal lattice vectors. The lower block compares the twist-averaged cohesive energy per
primitive cell with experimental results, showing the effect of increasing the size of the twist grid
from 3× 3 to 12× 12. For the calculation of the cohesive energy we follow Li et al. [18] and take
as the energy of a single carbon atom E= −37.84471 Ha [6]. All results include a structure-factor-
based finite-size correction [25] and ZPVE (see Sec. 4.7). The experimental results are based on
[26, 27].

Twists Weight DeepSolid Our work Exp.

Total energy / Ha
k1 = (0, 0) 1/9 −76.1406 −76.1414(2) -
k2 = (1/3, 1/3) 2/3 −76.2342 −76.2415(2) -
k3 = (2/3, 1/3) 2/9 −76.2479 −76.2432(2) -

Cohesive energy / Ha
Averaged 3× 3 - −0.5375 −0.5413(2) −0.538(2)
Averaged 12× 12 - - −0.5451(2)

With a network that has been trained across the entire Brillouin zone, we can evaluate observables
along arbitrary paths in k space. Fig. 2 is a bandstructure-like diagram, showing how the total
energy varies along a path passing through the high-symmetry k points Γ = (0, 0), M = (0, 1/2),
and K = (1/3, 2/3) in units of the supercell reciprocal lattice vectors. We use the pre-trained
model from the 12x12 Monkhorst-Pack grid and transfer it to the bandstructure-like diagram with
k-points previously unseen during optimization, requiring only a few additional optimization steps.
We fine-tune the pre-trained model for the k-points on the path, using around 100 optimization
steps per twist and then evaluate the energies along the path. Analogously to the Dirac cone visible
in the one-electron bandstructure, also our many-electron bandstructure displays a characteristic
cusp at the K point. However, since we are plotting the dependence of an nel-electron energy on a
many-body parameter (the twist), Fig. 2 is not directly comparable to a conventional one-electron
bandstructure diagram.
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Figure 2: Twist-dependent energy of Graphene a: Grid of pretrained twists and path of fine-
tuned values through Brillouin zone. b: Fine-tuned energies of graphene along path of twists across
the Brillouin zone. Fine-tuned using shared optimization and around 100 additional optimization
iterations per twist. Error bars are smaller than the size of the markers.

2.3 Lithium Hydride

We have also used the transferable DL-VMC ansatz to evaluate the energy-volume curve of LiH in
the rock-salt crystal structure. As shown in Fig. 3 (see also Sec. S4), we obtain the energy-volume
curve by fitting a Birch-Murhaghan equation of state to the total energies of a 2× 2× 2 supercell
at eight different lattice parameters. To reduce finite-size errors, the eight total energies are twist
averaged using a 5 × 5 × 5 Γ-centered Monkhorst-Pack grid and include structure-factor-based
finite-size corrections. For comparison, Li et al. [18] performed a Γ-point calculation only and
estimated finite-size errors by converging a Hartree-Fock calculation with an increasingly dense
twist grid. To all results we add zero-point vibrational energies (ZPVE) taken from [28], making
the calculated cohesive energy less negative by ≈ 8 mHa. The work of Li et al. [18] took no account
of the ZPVE, explaining the slight difference between our depiction of their results, shown in Fig. 3,
and their original publication [18].

We trained a single neural network wavefunction across 8 lattice constants and 10 symmetry-
reduced twists, making 80 systems in total. In comparison, Li et al. [18] required a separate
calculation for each geometry.

The Birch-Murnaghan fit gives an equilibrium lattice constant of 7.66(1)a0 (dotted orange line),
which agrees well with the experimental value of 7.674(2)a0 [28]. Our Birch-Murnaghan estimate
of the cohesive energy of −177.3(1) mHa / primitive cell deviates from the experimental value of
−175.3(4) mHa by −2.0(5) mHa. This marks an improvement over the DeepSolid results [18] of
−166.8(1) mHa, which differ from experiment by 8.5(5) mHa. Because we are able to optimize all
systems at once, our results were obtained with roughly 5% of the compute required by DeepSolid.

Although we improve on the DeepSolid baseline, the cohesive energy might potentially still be
impacted by finite-size effects because of the small size of the 2 × 2 × 2 supercell used. To check
this, we also studied a larger supercell containing 3× 3× 3 primitive unit cells.

Previous work on molecules has shown that it is sometimes possible to transfer pre-trained neural
wavefunctions to larger systems. For example, transferring parameters from a wavefunction pre-
trained on small molecules to larger molecules allowed a reduction in the number of optimization
steps by an order of magnitude compared to a random initialization of parameters [21, 29]. For our
application, we transferred the neural wavefunction optimized to represent a 2× 2× 2 simulation
cell of LiH at multiple twists and lattice constants to a much larger 3 × 3 × 3 supercell. The
108-electron 3× 3× 3 system is one of the largest to have been studied using neural wavefunctions
to date, with over three times more electrons than the 32-electron 2 × 2 × 2 system used for pre-
training. DeepSolid used 400, 000 optimization steps to get an estimate for the cohesive energy
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and overestimated the energy by around 7 mHa / per primitive cell compared to the experimental
results [18, 28]. By contrast, starting with the converged neural wavefunction for the 2 × 2 × 2
supercell, we are able to calculate the cohesive energy for the 3× 3× 3-supercell with only 8, 000
additional optimization steps shared across ten different twists. Using twist averaging, a structure-
factor correction, and a ZPVE correction as before, we obtain a cohesive energy of −174.6 mHa
/ primitive cell, deviating from experiment by only 0.7(5) mHa / primitive cell. The magnitude
of this deviation is close to the 0.4 mHa spread of experimental data obtained from different
thermochemistry experiments [28]. Our twist-averaged 3× 3× 3 calculation required only ∼2% of
the computational resources used by Li et al. [18] for a single Γ-point calculation.
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Figure 3: Energy-volume curve of LiH per primitive cell for a 2×2×2 supercell as calculated
using DeepSolid [18] and our transferable DL-VMC method. The DeepSolid results (black circles,
with a Birch-Murnaghan fit represented as a black line) were obtained at a single twist, the Γ-
point. Hartree-Fock corrections were applied, as discussed in [18], and a ZPVE correction added.
Our results (orange circles, with a Birch-Murnaghan fit represented as an orange line) are twist
averaged, using a 5 × 5 × 5 Monkhorst-Pack grid per lattice constant. Structure-factor-based
corrections were applied and a ZPVE correction added. The grey bar indicates the experimental
uncertainty [28]. The statistical error bars are too small to be visible on this scale and therefore
have beenn omitted. The vertical orange dashed line indicates the equilibrium lattice constant as
calculated from the Birch-Murnaghan fit to our data. The orange cross shows the twist-averaged
cohesive energy of a 3 × 3 × 3 simulation cell, using again structure factor correction. This was
obtained by transferring the network pre-trained for the 2× 2× 2 system to a 3× 3× 3 supercell,
using only 8,000 additional optimization steps. A 5×5×5 Monkhorst-Pack grid of twists was used.
The black cross shows the result of DeepSolid’s 3× 3× 3 Γ-point calculation with a Hartree-Fock
finite-size correction.

3 Discussion

Previous DL-VMC approaches were only capable of computing the wavefunction of a single system
at once [18] or were limited to gas-phase molecules [21, 29]. In this work we propose a generalized
neural network-based wavefunction for periodic systems. In addition to the electron positions,
the network uses information about the Hartree-Fock one-electron eigenfunctions. Maximally
localized Wannier functions are generated from the occupied Hartree-Fock orbitals and represented
as expansions in a basis of local atomic-like orbitals. The expansion coefficients are then used as
network inputs. By mapping cheap and low-accuracy orbital descriptors to highly accurate deep-
learning-based orbitals, in a manner based on the ideas of Ref. [21], we are able to optimize a
single neural wavefunction model across twists, lattice constants and supercell sizes all at once.
This reduces the computational cost by an order of magnitude. Cost reductions are particularly
important in solid-state simulations because large supercells must be studied to minimize finite-size
effects.
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We also investigate the transfer capabilities of a pre-trained wavefunction model. In particular,
we transfer a pre-trained model to a system more than three times larger and find that energies
converge using more than 50 times fewer optimization steps. This could pave the way to simulations
of the large supercells required to study metals or perhaps even high-temperature semiconductors.

Furthermore, we find that our approach is able to represent qualitatively different wavefunctions
within a single model. For example, for the hydrogen chain, a single ansatz with identical param-
eters can represent both the metallic state and the insulating state. A concurrent pre-print [30]
exploring a related idea — pre-training a neural wavefunction embedding layer for a lattice model
near a phase transition and then fine-tuning a final layer on either side of the transition — may
shed some light on this success. Our embeddings can learn robust, transferable, features that allow
efficient representation of the wavefunction in either phase.

Besides the transfer to larger systems, our method allows for efficient fine-grained twist-averaged
calculations. Unlike previous DL-VMC methods, we use a single network to represent wavefunc-
tions at multiple different twists, avoiding the computational overhead of training separate neural
network-based wavefunctions at each twist. Our ansatz already allows the concurrent optimization
of systems with varying numbers of particles, so this approach could be extended to grand-canonical
twist averaging [31], in which the number of electrons in the supercell varies with the twist.

Our approach shares many of the limitations of other DL-VMC methods, including the sensitivity
with regard to MCMC initialization. A standard practice in DL-VMC is to assign each electron
a spin and initialize it close to the nuclei at the beginning of the calculation. If the electrons are
initialized in an anti-ferromagnetic pattern, i.e., alternating the spins of neighboring atoms, but
the ground state is ferromagnetic, as can be the case for the hydrogen chain when the inter-atomic
separation is small (see Sec. 2.1), our approach tends to converge to local minima. FermiNet suffers
from similar problems.

Another limitation arises from the allocation of compute budget between the multiple geometries
or systems described by a single neural network. As discussed in Sec. 2.2, we allocate more compute
during optimization to twists with a larger weight. This has a positive effect on twist-averaged
results in general, because twists with higher contribution are converged to higher accuracy (see
Tab. 1). However for individual twists, when plotting for example the band structure (see Fig. 2),
not all twists are optimized to same accuracy potentially skewing results.

In comparison with other DL-VMC methods, the construction of our orbital matrix introduces
an additional dependency on the positions of the nuclei (see Eq. (6)). Tests suggest that this
worsens the empirical scaling of computational cost with the number of particles compared to
FermiNet, and that the added cost is greatest for systems with a low ratio of electrons to nuclei.
In the Supplementary Material, S1, we investigate empirically the effect on scaling of our newly
proposed architecture. The overall scaling is in principle still dominated by the computation of
the determinant and its derivative, implying that the time per iteration is O(nel4), just as it is
for FermiNet. For the system sizes investigated, however, we observe that our method requires
approximately twice (the ratio is system dependent) as much run time per optimization step as
FermiNet. This higher per-iteration cost is fortunately small relative to the orders of magnitude
reduction in the total number of iterations steps required.

In summary, the approach introduced in this paper reduces the computational cost of DL-VMC
simulations and allows them to be used to study larger supercells with more twists. By combining
the present work with the efficient forward evaluation of the Laplacian of the wavefunction recently
introduced by Li et al. [32] and using pseudo-potentials [33] to represent the core electrons, it should
be possible to scale to even larger systems.

4 Methods

4.1 Notation

All vectors, matrices and tensors are denoted by bold letters, except for functions. We use lower-
case indices i, j = 1, . . . , nel for electron positions and upper case indices I, J = 1, . . . , Natoms for
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atom positions, where nel and Natoms are the numbers of electrons and atoms in the supercell.
Orbitals are enumerated by the indices µ and ν, which range from 1 to nel. The position of
the i’th electron is ri ∈ R3. When i is not used as a subscript it denotes the imaginary unit. By
r = (r1, . . . , rnel

) we denote the 3nel-dimensional vector of all electron positions. Similarly, nuclear
positions and charges are represented by R = (R1, . . . ,RNatoms

) and Z = (Z1, . . . , ZNatoms
). The

matrix L ∈ R3×3 contains the supercell lattice vectors in its columns. The twist vector, which
may always be reduced into the first Brillouin zone of the supercell, is denoted by ks. The dot
product of two vectors a and b is written a ·b and by ⊙ we refer to the element-wise multiplication
(Hadamard product).

4.2 Deep-learning Variational Monte Carlo

The time-independent Schrödinger equation for a solid takes the form

ĤΨ = EΨ, Ĥ = −1

2

∑

i

∇2
ri

+ V̂Coulomb (2)

with the Hamiltonian in the Born-Oppenheimer approximation and Coulomb potential V̂Coulomb.
A finite supercell is used to approximate the bulk solid, and the Coulomb potential is evaluated
using the Ewald method, as described in [14, 34].

In this work we are interested in finding the lowest eigenvalue of the Schrödinger equation —
the ground-state energy, E0 — and the corresponding energy eigenfunction. To find an approx-
imate solution, one can reformulate the Schrödinger equation as a minimization problem using
the Rayleigh-Ritz variational principle. Given an arbitrary anti-symmetric trial wavefunction, Ψθ,
with θ denoting, for example, the trainable parameters of a neural network, the best attainable
approximation to the ground state may be found by minimizing the energy expectation value

L(θ) = Er∼Ψ2
θ

[
ĤΨθ

Ψθ

]
≥ E0 (3)

with respect to θ. An important constraint for the construction of the trial wavefunction arises
from the Pauli exclusion principle, which states that the wavefunction must be antisymmetric with
respect to the permutations of different electron coordinates [6]. In Sec. 4.3 we outline in detail
the underlying architecture of our neural network-based wavefunction. As in previous work, we
approximate the expectation value in Eq. (3) using Monte Carlo integration with samples drawn
from the 3nel-dimensional probability density |Ψθ(r)|2 [6, 8].

A list of all relevant hyperparameters can be found in the supplementary information S3.

4.3 Architecture

Overview Our ansatz can be broken down into the computation of periodic input features,
the computation of embeddings eiJ for each electron-nucleus pair, the computation of correlated
orbitals, and the assembly of the final wavefunction Ψθ as a sum of Slater determinants. Each step
serves a distinct purpose.

The input features enforce the periodic boundary conditions of the supercell. To capture correlation
effects, we use a neural network to map single-electron coordinates to vectors in a latent space.
These vectors, also known as embeddings, depend on the positions of all of the other electrons
in a permutation equivariant way. Each embedding therefore contains information about the
corresponding electron as well as its environment. The embeddings are subsequently mapped to
many-electron orbitals as outlined below.

Ansatz Our wavefunction ansatz is a sum of Slater determinants multiplied by a Jastrow factor,

Ψ(r,R,Z,ks) = eJ(r)
ndet∑

d=1

detΦd(r,R,Z,ks). (4)
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The optimization is free to adjust the relative normalizations of the determinants in the unweighted
sum, making it equivalent to a weighted sum of normalized determinants, as might be used in a
configuration-interaction expansion. The Jastrow factor eJ(r) is node-less and follows the work of
Hermann et al. [8], while the determinant enforces the fermionic antisymmetry. Instead of using
single-particle orbitals in the determinant, as in most quantum chemical approaches, we follow
other neural wavefunction methods [6] and promote every entry Φd,iµ in the orbital matrix Φd

from a one-electron orbital, ϕd,µ(ri), to a many-electron orbital, Φd,iµ(r) (temporarily dropping the
dependency on R, Z, and ks for the sake of brevity). The many-electron orbitals are permutation
equivariant, such that applying a permutation π to the electron position vectors permutes the rows
of Φd by π, i.e., Φd,iµ(rπ(1), . . . , rπ(nel)) = Φd,π(i)µ(r1, . . . , rnel

). This ensures that the determinant
has the correct fermionic symmetry. Each entry is constructed as a linear combination of atom-
centered functions with permutation equivariant dependencies on both electrons and atoms

Φd,iµ(r,R,Z,ks) = eiks·ri

Natoms∑

J=1

φdµ(ri, {r},RJ , {R}). (5)

Here, {r} and {R} denotes the (permutation invariant) set of electron and atom positions, respec-
tively. The phase factor enforces the twisted boundary conditions, as explained in Sec. 4.7. To
construct the φdµiJ ≡ φdµ(ri, {r},RJ , {R}) using a neural network, we use an adaptation of the
recently proposed transferable atomic orbital ansatz [21, 29]. The orbitals are written as the inner
product of an electron-nuclear embedding eiJ ∈ Rnemb and an orbital embedding WdµJ ∈ Cnemb ,
multiplied by an exponential envelope,

φdµiJ = (WdµJ · eiJ)e−adµJ ||siJ ||per

. (6)

where adµJ is a learnable decay rate, siJ is the vector from nucleus J to electron i, expressed in
the basis of the supercell lattice vectors, and ||siJ ||per is the modulus of siJ in a periodic norm
explained below. Both the orbital embedding WdµJ and the decay length adµJ depend on the
orbital µ and atom J and are different for each determinant d.

To obtainWdµJ and adµJ in a transferable way, we do not parameterize them directly but represent
them as functions of some orbital-specific descriptor c̃µJ ∈ Rdorb :

WdµJ = fWd (c̃µJ) , adµJ = fad (c̃µJ) , (7)

with fW : Rdorb → Cndet×demb and fa : Rdorb → Rndet denoting simple multi-layer perceptrons.
The orbital embedding includes information about single-particle orbitals of the system calculated
with a mean-field method, which is key for the transferability of the ansatz. The inputs are the
orbital features c̃µJ ∈ Rdorb , which are concatenations of the expansion coefficients of the localized
mean-field orbitals in an atom-centred basis set, the twist ks, the mean position of orbital µ,
and the position of atom J , with a combined dimensionality of dorb. While all parameters and
intermediate computations of our network are real-valued, the last layer of fW is complex-valued
to allow the network to represent complex-valued wavefunctions.

An important difference with respect to previous neural network-based wavefunctions is the use of
electron-nuclear embeddings eiJ , which describe the interaction between electron i and nucleus J .
Other architectures such FermiNet, but also the more closely related transferable atomic orbital
ansatz [21], use embeddings to represent the interactions of a single electron i with all nuclei
instead. However, when the embeddings are both invariant under permutation of nuclei (which we
require for efficient transferability) and invariant under translation of particles by a supercell lattice
vector (which we require to enforce boundary conditions), they become periodic on the primitive
lattice (see the supplementary information S2), not just the supercell lattice. This is too restrictive
to represent correlation beyond a single primitive cell. We therefore opt to use electron-nucleus
embeddings that are equivariant under permutation of nuclei at some additional computational
cost explained in Sec. S2.

Input We require our representation of the difference vectors rij = ri − rj , riI = ri −RI and
rIJ = rI − RJ to be periodic with respect to the supercell lattice. This is accomplished using
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the approach introduced by Cassella et al. [14]. The first step is to transform the coordinates into
supercell fractional coordinates with sij = L−1rij , siI = L−1riI and sIJ = L−1rIJ . Periodic
versions of the difference vectors are then obtained by applying sine and cosine element-wise,

ω(s) := [sin(2πs), cos(2πs)], ω : R3 → R6, (8)

xij := ω(sij), xiJ := ω(siJ), xIJ := ω(sIJ), (9)

whereas square brackets denotes the concatenation operator. For the distance, we use the following
periodic norm

(||s||per)2 =

3∑

l,p=1

((
1− cos(2πsl)

)
Alp
(
1− cos(2πsp)

)
+ sin(2πsl)Alp sin(2πsp)

)
(10)

for a vector s ∈ R3 with the lattice metric A := LLT . This norm is used to define the periodic
distance features:

xij = ||sij ||per, xiJ = ||siJ ||per, xIJ = ||sIJ ||per. (11)

Embedding The periodic input features are used to generate high-dimensional embeddings eiJ
for the construction of the orbital matrix. The following embedding is a slight adaption of the
appraoch used in the recently proposed Moon architecture [35]. We start by aggregating the
electron-electron features into message vectors m0

i for each electron i

m0
i =

nel∑

j=1

Γe-e(xij , xij)⊙ σ (Wmx̃ij + bm) , (12)

and compute the initial electron embeddings h0
i as a trainable function of these messages

h0
i = σ

(
W 0m0

i + b0
)
. (13)

The matrices Wm, W 0 and vectors bm, b0 are trainable parameters, σ is an activation function
which is applied elementwise and ⊙ denotes the elementwise product. The filter function Γe-e

Γe-e(xij , xij) = σ
(
W envxij + b

)
⊙ exp

(
−x2ijα

)
, (14)

ensures an exponential decay with a trainable vector of length-scales, α and a trainable matrix
W env. Furthermore, the input features x̃ij = [xij ,xij ,ks] make the embedding twist dependent
to allow for better transferability across twists.

To initialize the atomic features, we first one-hot encode the nuclear charges Z into a matrix
H̃ ∈ RNatoms×nspecies . We then initialize the atom embeddings H0

I analogously to the electron
embeddings, by aggregating atom-atom features for each atom I

H0
I =

Natoms∑

J=1

Γa-a(xIJ , xIJ)⊙ σ
(
W aH̃J + ba

)
, (15)

using a trainable weight matrix W a and bias vector ba. We then incorporate electron-atom infor-
mation by contracting across all electrons

H1
I =

nel∑

i=1

e0iI ⊙
(
W e-a Γe-a(xiI , xiI)

)
(16)

e0iI = σ
(
h0
i +H0

I +W edgex̃iI + bedge
)
, (17)

with x̃iI = [xiI ,xiI ,ks] and trainable matrices W e-a,W edge and bias bedge. Subsequently, the
atom embeddings are updated with L dense layers

H l+1
I = σ

(
W lH l

I + bl
)
+H l

I , (18)
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to finally diffuse them to electron-atom embeddings eiI of the form

eiI = σ
(
W out1e0iI +HL

I +W out2h0
i + bout

)
⊙
(
W out3 Γout(xiI , xiI)

)
. (19)

with trainable matrix W out1 ,W out2 ,W out3 and trainable bias vector bout. For the sake of sim-
plicity we omitted the spin dependence in this presentation of the different embedding stages.
Compared to the original Moon embedding [35], we use separate filters Γ for the intermediate
layers and the output layer, we include the twist as input feature, and omit the final aggregation
step from electron-ion embeddings eiI to electron embeddings ei.

Orbitals The orbital features c̃µJ are a concatenation of four different types of features. First, as
proposed by Scherbela et al. [21], we rely on mean-field coefficients from a Hartree-Fock calculation.
The mean-field orbitals ϕµ are localized as described in Sec. 4.6 and expanded in periodic, atom-
centered, basis functions bη

ϕµ(ri) =

Natoms∑

I=1

nb∑

η=1

cIµ,η bη(ri −RI), (20)

where nb represents the per-atom basis set size of the Hartree-Fock calculation. We use a periodic
version of the cc-pVDZ basis set [36] and find no strong dependence of our results on the basis set
used. Additionally, we include relative atom positions R̃I

R̃I = RI −
∑Natoms

J=1 RJZJ∑Natoms

K=1 ZK
(21)

and analogously relative orbital positions R̃orb
µ

R̃orb
µ = Rorb

µ −
∑Natoms

J=1 RJZJ∑Natoms

K=1 ZK
, (22)

where Rorb
µ is the position of the localized orbital µ as outlined in Sec. 4.6. This allows the network

to differentiate between different atoms and orbitals within the supercell. As a final feature we
include the twist of the system

k̃s
I = [ks, sin(RI · ks), cos(RI · ks)] ∈ R5. (23)

The final orbital features c̃Iµ are obtained as a concatenation

c̃Iµ = [cIµ, R̃I , R̃
orb
µ , k̃s

I ] ∈ Rdorb , (24)

where dorb = nb + 11.

4.4 Sampling

We use the Metropolis Hastings algorithm [37] to draw samples r from our unnormalized density
|Ψθ|2. We use Gaussian all-electron proposals rprop of the form

rprop = r + sδ, (25)

where δ is drawn from a 3nel-dimensional standard normal distribution. We continously adjust
the stepsize s to obtain a mean acceptance probability of 50%.

When calculating properties of the hydrogen chain for different lattice constants R, special care
must be given to the treatment of spins. The hydrogen chain has two phases with different
arrangements of spins: In the insulating phase at large lattice constant, the ground state is anti-
ferromagnetic, i.e. neighbouring spins prefer to be aligned antiparallel. In the metallic phase at
small lattice constant, this antiferromagnetic ordering decreases and the system may even show
ferromagnetic domains [3]. Moving between these two configurations is difficult using local Monte

12



Carlo updates as given by Eq. (25), so we modify our Metropolis Hastings proposal function. In
addition to moving electrons in real space, we occasionally propose moves that swap the positions of
two electrons with opposite spin. To avoid biasing our sampling towards either spin configuration,
we initialize half our Monte Carlo walkers in the antiferromagnetic configuration (neighbouring
electrons having opposite spin) and half our Monte Carlo walkers in a ferromagnetic configuration
(all spin-up electrons in one half of the chain and all spin-down electrons in the other half). We
found that on the contrary initializing all walkers in the antiferromagnetic configuration (as might
be indicated, for example, by a mean-field calculation) can cause the optimization to fall into local
energy minima during wavefunction optimization.

4.5 Complex KFAC

We use the Kronecker Factored Approximate Curvature (KFAC) method [38] to optimize the
trainable parameters of our ansatz. KFAC uses the Fisher information matrix as a metric in
the space of wavefunction parameters. For real wavefunctions, the Fisher matrix is equivalent to
the preconditioner used in the stochastic reconfiguration method [6], but this is not the case for
complex wavefunctions. Instead, the Fubini-Study metric should be used, given by

Fij = Re

{〈
∂ lnψ

∂θi

∗ ∂ lnψ
∂θj

〉}
(26)

Writing the complex wavefunction in polar form, ψ = ρeiϕ, this becomes

F =

〈
∂ ln ρ

∂θi

∂ ln ρ

∂θj
+
∂ϕ

∂θi

∂ϕ

∂θj

〉
, (27)

where the first term is the Fisher information matrix and the second term is the new contribution
due to the phase of the wavefunction. The second term is zero if the phase is a global constant, as
is the case when the phase arises from the twist of the wavefunction only.

4.6 Orbital localization

To obtain orbital features that generalize well across system sizes, we do not use the canonical
mean-field coefficients c as network inputs. Rather, we use the coefficients cloc of maximally
localized Wannier orbitals computed from c. We follow the procedure of [39] to find a unitary
rotation U within the subspace spanned by the occupied orbitals. Given a set of mean-field
orbitals ϕµ(r), µ = 1, . . . , nel, expanded in periodic, atom-centered basis functions bIη(r), I =
1, . . . , Natoms, η = 1, . . . , nb, as described in Sec. 4.3, we compute the complex polarization matrix

χα,νµ =

∫
ϕ∗ν(r)e

irTGαϕµ(r)dr, χ ∈ C3×norb×norb (28)

where G = 2πL−T is the matrix of reciprocal lattice vectors. Given a unitary transformation
U ∈ Cnorb×norb , the transformed polarization matrix χ̂ and the corresponding localization loss L
are given by

Ωαµ = χ̂α,µµ =
(
U †χαU

)
µµ

(29)

L(U) = −||Ω(U)||22, (30)

where || · ||2 denotes the L2-norm. To facilitate unconstrained optimization, we parameterize the
unitary matrix U as the complex matrix exponential of a symmetrized, unconstrained complex
matrix A:

U = e
i
2 (A+A†). (31)

We obtain the optimal U loc, and corresponding orbital coefficients cloc via gradient-based opti-
mization

U loc = argmin
U

L(U), clocIη,µ =
∑

m

cIη,νU
loc
νµ , (32)
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using the Adam [40] optimizer. For orthorombic supercells, the position of the Wannier center
Rorb
µ of the localized orbital µ can be inferred from the localized polarization matrix χ̂ as

Rorb
lα = −Lαα

2π
Im log χ̂αµµ, α = 1 . . . 3, µ = 1 . . . norb. (33)

For other supercells we follow the generalization given in [39].

4.7 Observables and post-processing

Twist-averaged boundary conditions In a finite system, there are finite-size errors related
to both the artificial constraint of periodicity in the supercell and the lack of correlations of longer
range than the supercell. The effects of the former on the single-particle contributions to the
Hamiltonian, namely the kinetic energy, the Hartree-energy and the electron-ion interaction, can
be reduced by using twist-averaged boundary conditions (TABC)[20, 25]. This means that the
wavefunction obeys

Ψ(r1, . . . , ri +Lα, . . . , rN ) = eik·LαΨ(r1, . . . , ri, . . . , rN ), (34)

where Lα is the α’th supercell lattice vector. TABC are enforced by adding a position-dependent
phase eiks·ri for each electron in the transferable atomic orbitals, as seen in Eq. (5) and averaging
observables across a grid of twists ks spanning first Brillouin zone.

Structure factor correction In order to handle finite-size errors in the Ewald energy, we use
the finite-size corrections proposed by [25]. Writing the Ewald energy in terms of Fourier series,
we get

〈
V̂E

〉
=
N

2



vM +

1

Ω

∑

Gs ̸=0

vE(Gs)[S(Gs)− 1]



+

1

2Ω

∑

Gp ̸=0

vE(Gp)ρ(Gp)ρ
∗(Gp). (35)

Here vM is the Madelung energy, Ω is the supercell volume, vE(k) = 4π/k2 is the Fourier transform
of the Coulomb interaction, and Gs (Gp) is a simulation (primitive) cell reciprocal lattice vector.
The translationally-averaged structure factor S(Gp) is defined by

S(Gs) =
1

N
[⟨ρ̂(Gs)ρ̂

∗(Gs)⟩ − ⟨ρ̂(Gs)⟩ ⟨ρ̂∗(Gs)⟩] , (36)

where ρ̂(Gs) =
∑
i exp (−iGs · ri) is the Fourier representation of the operator for the electron

density. The structure factor converges fairly rapidly with supercell size, so we can assume that
SΩ(k) ≈ S∞(k). In this limit, the largest contribution to the error is the omission of the Gs = 0
term in the first sum. In cubic systems, we have S(k) ∝ ηk2 + O(k4), with odd terms missing
due to inversion symmetry, and the k → 0 limit of S(k)vE(k) is well defined. As such, to a first
approximation, the Ewald finite-size error is given by

∆VE ≈
N

2Ω
lim
k→0

vE(k)S(k) =
4πN

2Ω
lim
k→0

S(k)

k2
. (37)

Sampling S(Gs) at supercell reciprocal lattice vectors Gs, we approximate the limit k → 0 by
fitting the function

S(k) ≈ f(k) = 1− e−a0k2−a1k4 , (38)

with a0 and a1 greater than zero. The form of the fit ensures that S(k) has the correct k2 behavior
at small k and that limk→∞ S(k) = 1. The finite-size correction ∆VE ≈ 4πNa0/2Ω.

Zero-point vibrational energy for graphene To estimate the zero-point vibrational energy
(ZPVE) contribution for graphene, we obtained the phonon density of states D(ω) calculated
within DFT at the PBE [1] level from [41]. The ZPVE energy per primitive cell, EZPVE, is then
given as

EZPVE =
3Nprim

atoms∫
D(ω)dω

∫
D(ω)

1

2
ℏωdω, (39)
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where Nprim
atoms = 2 is the number of atoms per primitive unit cell of graphene. This yields a ZPVE

of 12.8 mHa / primitive cell.

5 Code availability

All code is available on our github repository https://github.com/mdsunivie/deeperwin.

6 Data availability

All data, including geometries, configurations, and the figure source data is available on our github
repository https://github.com/mdsunivie/deeperwin.
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Supplementary Information for
Transferable Neural Wavefunctions for Solids

S1 Scaling of compute cost with system size

Computing the orbital matrix Φik in our ansatz for each electron i and orbital k requires a sum
over all nuclei J . Since the number of orbitals and electrons are equal to nel and the number of
nuclei Natoms is in a worst-case also equal to nel, materializing this matrix has a worst-case scaling
of O(nel3). This is in contrast to other approaches such as FermiNet, where this matrix is not given
as a sum over nuclei and thus only scales as O(nel2). Because scaling in the limit of nel →∞ is in
either case dominated by the evaluation of the determinant, which scales as O(nel3), this does not
impact the overall scaling of the method, but can lead to different empirical scaling. Fig. S1 depicts
median run-time per optimization step for FermiNet (our implementation) and our approach. We
compare timings on chains of Hydrogen atoms of increasing length and dimers of increasing nuclear
charge. The former depicts the worst case for our method, the latter is close to the best case. All
timings are obtained on 2 A100-GPUs using a batch-size of 512 and 8 determinants.
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Figure S1: Scaling of computational cost: Markers correspond to measured timings, lines
correspond to least-square fits of power-laws, with the exponents denoted in the legend.

S2 Limited expressiveness of electron-wise embeddings

Prior work has relied on embeddings hi for each electron i to construct correlated orbitals. We
show that requiring the following three reasonable symmetries already overly constrains which
embeddings hi (and consequently orbitals Φ) can be represented:

Invariance wrt. to continuous translation of all particles:

h(r1 + δ, . . . rnel
+ δ,R1 + δ, . . . ,RNatoms + δ) = h(r1, . . . , rnel

,R1, . . . ,RNatoms). (S1)

Invariance wrt. to permutation of nuclei of same charge Z:

h(r1, . . . , rnel
,R1, . . . ,RI , . . .RJ , . . .RNatoms

) = h(r1, . . . , rnel
,R1, . . . ,RJ , . . .RI , . . .RNatoms

).
(S2)

Invariance wrt. to translation of any particle by a supercell lattice vector Lsc:

h(r1 +Lsc, . . . , rnel
,R1, . . .RNatoms

) = h(r1, . . . , rnel
,R1,RNatoms

). (S3)

To demonstrate the problem consider a simplified 1D example with a single electron and a supercell
consisting of N primitive cells, with lattice consant a, each containing a single nucleus. The
coordinates RJ of all nuclei in the supercell are thus given by

RJ = Ja. (S4)
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An embedding satisfying the invariances eq. (S1), eq. (S2), eq. (S3) is given by any permutation
invariant function h

h = h ((ω(r −R1), . . . , ω(r −RNatoms
)) (S5)

= h(ω(r − a), ω(r − 2a), . . . , ω(r −Na)), (S6)

where ω computes input features that are periodic in the supercell

ω(x) = ω(x+ Lsc) = ω(x+Na). (S7)

Here using distances r−R automatically enforces eq. (S1) and using periodic versions ω(r−R) of
these distances automatically enforces eq. (S3).

For this system, any embedding following the structure in eq. (S5) is necessarily not only invariant
under translations of electrons by a supercell lattice vector, but also invariant under translation of
electrons by a primitive lattice vector.

hshiftedprim = h(r + a,R1, . . . , RNatoms) (S8)

= h ((ω(r + a− a), ω(r + a− 2a), . . . , ω(r + a−Na)) (S9)

S2
= h ((ω(r − a), ω(r − 2a), . . . , ω(r)) (S10)

S3
= h ((ω(r − a), ω(r − 2a), . . . , ω(r −Na)) (S11)

= h(r,R1, . . . , RNatoms
) = horig. (S12)

Therefore using electron embeddings with these symmetries allows only representation of orbitals
that are periodic on the primitive lattice. This excludes many relevant functions such as local-
ized orbitals and prevents the network from representing long-range correlations. To break this
unwanted symmetry there are at least three options:

• Break invariance with respect to permutation of nuclei. Non-transferable ansätze such as
FermiNet [6], PsiFormer [10] or DeepSolid [18] all break this permutation invariance. Since
these approaches are only ever trained on a single system (and thus a single permutation
of nuclei) this poses no issue there, but prevents efficient generalization to permuted, but
physically identical systems.

• Break supercell lattice translational symmetry. For gas-phase calculations there is no pe-
riodicity and thus existing transferable approaches [21, 29, 35] do not face this issue. For
periodic systems however periodicity is required to be able to enforce boundary conditions.

• Use permutation equivariant electron-ion embeddings instead of permutation invariant elec-
tron embeddings, as done in this work.

S3 Hyperparameters

A detailed description of the hyperparameter used in this work can be found below (cf. tab. 1). For
optimization we rely on the second-order method KFAC [38] and use their Python implementation
[42].
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Table 1: Hyperparameter settings used in this work

HF-pre-training
Pre-training basis set cc-pVDZ
Pre-training steps per geometry 100-500

Embedding

Envelope power γ 2
Uniform initialization of envelope scaling α 8-10
El-el hidden dimension 32
El-Ion hidden dimension 128
Ion hidden dimension 128
№ hidden layers of ion embedding 3
Final el-ion embedding dimension eiI 64

Transferable
atomic orbitals

№ determinants ndet 8
Basis set for orbital descriptor cc-pVDZ
№ hidden layers of fW 2
Hidden dimension of fW 128
№ hidden layers of fa 2
Hidden dimension of fa 32
Activation function ReLU
Residual connection True
Layer Norm True

Jastrow factor
№ hidden layers of MLP 2
Hidden dimension of MLP 40

Markov Chain
Monte Carlo

№ walkers 2048
№ decorrelation steps 20
Target acceptance prob. 50%

Variational
optimization

Optimizer KFAC
Damping 1− 3× 10−3

Norm constraint 1× 10−3

Batch size 2048
Initial learning rate lr0 0.1− 0.3
Learning rate decay lr(t) = lr0(1 + t/6000)−1

Optimization steps 100,000 - 200,000

Changes for
Reuse

Initial learning rate lr0 0.05
Learning rate decay lr(t) = lr0(1 + t/6000)−1

Optimization steps 0 - 10,000

S4 Total energies

For better comparison we add the total energies of the results in Tab. 1 and Fig. 3. For Graphene
(see Sec. 2.2) we state the total energies per primitive cell for each twist plus the combination
of structure-factor-based finite size corrections and ZPVE in Tab. 2. For LiH (see Sec. 2.3) we
state the twist averaged energies per primitive cell for each lattice constant, separately depicting
structure-factor-based finite size correction and ZPVE in Tab. 3
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Table 2: Total energies of graphene in Hartrees. The energies depict the total energies per
primitive cell by sequentially adding structure-factor-based finite-size correction (SFC) and ZPVE.
The systems represent the symmetry-inequivalent twists for the 12× 12 Monkhorst-Pack grid.

Twists Total Energy
Total energy
+ SFC

Total energy
+ SFC
+ ZPVE

k = (0.33, 0.33) −76.2572 −76.2543 −76.2415
k = (0,−0.17) −76.2002 −76.1972 −76.1844
k = (−0.08,−0.42) −76.2679 −76.2650 −76.2522
k = (−0.08,−0.33) −76.2470 −76.2441 −76.2313
k = (−0.08,−0.25) −76.2190 −76.2160 −76.2032
k = (−0.17,−0.42) −76.2615 −76.2586 −76.2458
k = (0.67, 0.33) −76.2590 −76.2560 −76.2432
k = (−0.17,−0.58) −76.2775 −76.2746 −76.2618
k = (−0.08,−0.17) −76.1914 −76.1884 −76.1756
k = (−0.08,−0.50) −76.2786 −76.2757 −76.2629
k = (0, 0) −76.1572 −76.1542 −76.1414
k = (0,−0.25) −76.2308 −76.2278 −76.2150
k = (−0.17,−0.33) −76.2407 −76.2377 −76.2249
k = (−0.25,−0.50) −76.2688 −76.2658 −76.2530
k = (0,−0.08) −76.1723 −76.1693 −76.1565
k = (0,−0.50) −76.2787 −76.2758 −76.2630
k = (0,−0.42) −76.2737 −76.2708 −76.2580
k = (−0.25,−0.58) −76.2728 −76.2699 −76.2571
k = (−0.17,−0.50) −76.2740 −76.2710 −76.2582
Averaged 3× 3 −76.2465 −76.2435 −76.2307
Averaged 12× 12 −76.2503 −76.2473 −76.2345

Table 3: Total energies of LiH in Hartrees. The energies depict the twist averaged total energies
per primitive cell by sequentially adding structure-factor-based finite-size correction (SFC) and
ZPVE. For the twist averaging we use a 5× 5× 5 Monkhorst-Pack grid per lattice constant. The
energies accompanies the Fig. 3.

Supercell
size

Lattice
constant / a0

Total Energy
Total energy
+ SFC

Total energy
+ SFC
+ ZPVE

2× 2× 2

6.4 −8.1654 −8.1462 −8.1338
6.8 −8.1752 −8.1574 −8.1464
7.2 −8.1792 −8.1626 −8.1529
7.6 −8.1789 −8.1636 −8.1554
7.9 −8.1759 −8.1618 −8.1545
8.3 −8.1709 −8.1580 −8.1522
8.7 −8.1646 −8.1527 −8.1482
9.1 −8.1574 −8.1467 −8.1436

3× 3× 3 7.674 −8.1644 −8.1604 −8.1524
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